
Angel Porgador

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7918451/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Blocking the PCNA/NKp44 Checkpoint to Stimulate NK Cell Responses to Multiple Myeloma. International Journal of Molecular Sciences, 2022, 23, 4717.	1.8	3
2	High throughput screen for the improvement of inducible promoters for tumor microenvironment cues. Scientific Reports, 2022, 12, 7169.	1.6	2
3	Synthetic promoters to induce immune-effectors into the tumor microenvironment. Communications Biology, 2021, 4, 143.	2.0	11
4	Nanowire Based Guidance of the Morphology and Cytotoxic Activity of Natural Killer Cells. Small, 2021, 17, 2007347.	5.2	7
5	Life-extended glycosylated IL-2 promotes Treg induction and suppression of autoimmunity. Scientific Reports, 2021, 11, 7676.	1.6	17
6	Nanowire Based Mechanostimulating Platform for Tunable Activation of Natural Killer Cells. Advanced Functional Materials, 2021, 31, 2103063.	7.8	13
7	Digital Display Precision Predictor: the prototype of a global biomarker model to guide treatments with targeted therapy and predict progression-free survival. Npj Precision Oncology, 2021, 5, 33.	2.3	5
8	IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer. Cancers, 2021, 13, 2250.	1.7	8
9	Antibody-Functionalized Nanowires: A Tuner for the Activation of T Cells. Nano Letters, 2021, 21, 4241-4248.	4.5	9
10	Molecular-scale spatio-chemical control of the activating-inhibitory signal integration in NK cells. Science Advances, 2021, 7, .	4.7	9
11	Rapid Response to the Combination of Lenvatinib and Pembrolizumab in Patients with Advanced Carcinomas (Lung Adenocarcinoma and Malignant Pleural Mesothelioma). Cancers, 2021, 13, 3630.	1.7	8
12	An optimized intracerebroventricular injection of CD4+ TÂcells into mice. STAR Protocols, 2021, 2, 100725.	0.5	6
13	An optimized protocol for the retroviral transduction of mouse CD4 TÂcells. STAR Protocols, 2021, 2, 100719.	0.5	4
14	Mechanical Regulation of the Cytotoxic Activity of Natural Killer Cells. ACS Biomaterials Science and Engineering, 2021, 7, 122-132.	2.6	16
15	Fc-Independent Protection from SARS-CoV-2 Infection by Recombinant Human Monoclonal Antibodies. Antibodies, 2021, 10, 45.	1.2	9
16	Detection, prediction, and prognosis: blood circulating microRNA as novel molecular markers of head and neck cancer patients. Expert Review of Molecular Diagnostics, 2020, 20, 31-39.	1.5	7
17	CDK 4/6 Inhibition Overcomes Acquired and Inherent Resistance to PI3Kα Inhibition in Pre-Clinical Models of Head and Neck Squamous Cell Carcinoma. Journal of Clinical Medicine, 2020, 9, 3214.	1.0	6
18	Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. Nature Cancer, 2020, 1, 894-908.	5.7	43

#	Article	IF	CITATIONS
19	Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers. Science Advances, 2020, 6, .	4.7	135
20	N-Glycans Mediate the Ebola Virus-GP1 Shielding of Ligands to Immune Receptors and Immune Evasion. Frontiers in Cellular and Infection Microbiology, 2020, 10, 48.	1.8	11
21	Multiple viral proteins and immune response pathways act to generate robust long-term immunity in Sudan virus survivors. EBioMedicine, 2019, 46, 215-226.	2.7	2
22	Inhibition of the NKp44-PCNA Immune Checkpoint Using a mAb to PCNA. Cancer Immunology Research, 2019, 7, 1120-1134.	1.6	26
23	Datasets of RT spoofing attacks on MIL-STD-1553 communication traffic. Data in Brief, 2019, 23, 103863.	0.5	11
24	Tumor Tissue Explant Culture of Patient-Derived Xenograft as Potential Prioritization Tool for Targeted Therapy. Frontiers in Oncology, 2019, 9, 17.	1.3	19
25	Selective Labeling and Growth Inhibition of <i>Pseudomonas aeruginosa</i> by Aminoguanidine Carbon Dots. ACS Infectious Diseases, 2019, 5, 292-302.	1.8	50
26	Nanoscale Mechanosensing of Natural Killer Cells is Revealed by Antigenâ€Functionalized Nanowires. Advanced Materials, 2019, 31, e1805954.	11.1	44
27	Improving the effectiveness of intrusion detection systems for hierarchical data. Knowledge-Based Systems, 2019, 168, 59-69.	4.0	28
28	Human antiâ€NKp46 antibody for studies of NKp46â€dependent NK cell function and its applications for type 1 diabetes and cancer research. European Journal of Immunology, 2019, 49, 228-241.	1.6	13
29	Splice variants of human natural cytotoxicity receptors: novel innate immune checkpoints. Cancer Immunology, Immunotherapy, 2018, 67, 1871-1883.	2.0	13
30	Spatial and Chemical Surface Guidance of NK Cell Cytotoxic Activity. ACS Applied Materials & Interfaces, 2018, 10, 11486-11494.	4.0	12
31	The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells. Frontiers in Immunology, 2018, 9, 1428.	2.2	22
32	NKp44-Derived Peptide Binds Proliferating Cell Nuclear Antigen and Mediates Tumor Cell Death. Frontiers in Immunology, 2018, 9, 1114.	2.2	22
33	Natural killer cells' immune response requires a minimal nanoscale distribution of activating antigens. Nanoscale, 2018, 10, 14651-14659.	2.8	24
34	Adipose tissue supports normalization of macrophage and liver lipid handling in obesity reversal. Journal of Endocrinology, 2017, 233, 293-305.	1.2	16
35	Nitric Oxide Sensing through Azo-Dye Formation on Carbon Dots. ACS Sensors, 2017, 2, 1215-1224.	4.0	63
36	Sudan ebolavirus long recovered survivors produce GP-specific Abs that are of the IgG1 subclass and preferentially bind Fcl³RI. Scientific Reports, 2017, 7, 6054.	1.6	13

#	Article	IF	CITATIONS
37	Detection of Reactive Oxygen Species by a Carbon-Dot–Ascorbic Acid Hydrogel. Analytical Chemistry, 2017, 89, 830-836.	3.2	60
38	Expression of NKp46 Splice Variants in Nasal Lavage Following Respiratory Viral Infection: Domain 1-Negative Isoforms Predominate and Manifest Higher Activity. Frontiers in Immunology, 2017, 8, 161.	2.2	12
39	Regulation of the Functions of Natural Cytotoxicity Receptors by Interactions with Diverse Ligands and Alterations in Splice Variant Expression. Frontiers in Immunology, 2017, 8, 369.	2.2	61
40	Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor. Frontiers in Immunology, 2017, 8, 1212.	2.2	20
41	Streptococcus pneumoniae fructose-1, 6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. International Journal of Molecular Medicine, 2016, 37, 1127-1138.	1.8	27
42	Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation. PLoS ONE, 2016, 11, e0160779.	1.1	9
43	NKp44 and NKp30 splice variant profiles in decidua and tumor tissues: a comparative viewpoint. Oncotarget, 2016, 7, 70912-70923.	0.8	14
44	Survival in acute myeloid leukemia is associated with NKp44 splice variants. Oncotarget, 2016, 7, 32933-32945.	0.8	27
45	<i>α</i> 1â€Antitrypsin modifies general natural killer cell interactions with dendritic cells and specific interactions with islet <i>β</i> â€cells in favour of protection from autoimmune diabetes. Immunology, 2015, 144, 530-539.	2.0	26
46	Central nervous system acute lymphoblastic leukemia: role of natural killer cells. Blood, 2015, 125, 3420-3431.	0.6	37
47	First Trimester Pregnancy Loss and the Expression of Alternatively Spliced NKp30 Isoforms in Maternal Blood and Placental Tissue. Frontiers in Immunology, 2015, 6, 189.	2.2	21
48	NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization. Frontiers in Immunology, 2015, 6, 495.	2.2	43
49	Colorimetric Polymer Assay for the Diagnosis of Plasma Lipids Atherogenic Quality in Hypercholesterolemic Patients. Molecular Diagnosis and Therapy, 2015, 19, 35-43.	1.6	6
50	Regulation of natural cytotoxicity receptors by heparan sulfate proteoglycans in <i> is</i> : A lesson from NKp44. European Journal of Immunology, 2015, 45, 1180-1191.	1.6	26
51	Development of stage-dependent glycans on the Fc domains of IgG antibodies of ALS animals. Experimental Neurology, 2015, 267, 95-106.	2.0	6
52	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2015, 125, 1763-1763.	3.9	1
53	Targeting Natural Killer Cell Reactivity by Employing Antibody to NKp46: Implications for Type 1 Diabetes. PLoS ONE, 2015, 10, e0118936.	1.1	18
54	Evaluation of purified natural killer cell functions in familial hemophagocytic lymphohistiocytosis. LymphoSign Journal, 2015, 2, 207-212.	0.1	1

#	Article	IF	CITATIONS
55	A simplified interventional mapping system (SIMS) for the selection of combinations of targeted treatments in non-small cell lung cancer. Oncotarget, 2015, 6, 14139-14152.	0.8	22
56	Extracting tumor tissue immune status from expression profiles: correlating renal cancer prognosis with tumor-associated immunome. Oncotarget, 2015, 6, 33191-33205.	0.8	3
5 7	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
58	An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget, 2014, 5, 10949-10958.	0.8	25
59	Carbohydrate-Mediated Modulation of NK Cell Receptor Function: Structural and Functional Influences of Heparan Sulfate Moieties Expressed on NK Cell Surface. Frontiers in Oncology, 2014, 4, 185.	1.3	14
60	RORÎ ³ t+ Innate Lymphoid Cells Acquire a Proinflammatory Program upon Engagement of the Activating Receptor NKp44. Immunity, 2013, 38, 1223-1235.	6.6	166
61	Genome-Wide siRNA Screen Reveals a New Cellular Partner of NK Cell Receptor KIR2DL4: Heparan Sulfate Directly Modulates KIR2DL4-Mediated Responses. Journal of Immunology, 2013, 191, 5256-5267.	0.4	46
62	NADH Oxidase Functions as an Adhesin in Streptococcus pneumoniae and Elicits a Protective Immune Response in Mice. PLoS ONE, 2013, 8, e61128.	1.1	23
63	A Novel "Reactomics―Approach for Cancer Diagnostics. Sensors, 2012, 12, 5572-5585.	2.1	5
64	Dimerization of NKp46 Receptor Is Essential for NKp46-Mediated Lysis: Characterization of the Dimerization Site by Epitope Mapping. Journal of Immunology, 2012, 188, 6165-6174.	0.4	18
65	The Effect of Chemotherapy/Radiotherapy on Cancerous Pattern Recognition by NK Cells. Current Medicinal Chemistry, 2012, 19, 1780-1791.	1.2	28
66	Upregulation of MHC class I expression following dengue virus infection: the mechanism at the promoter level. Expert Review of Anti-Infective Therapy, 2012, 10, 285-287.	2.0	4
67	A novel mechanism for cancer cells to evade immune attack by NK cells. OncoImmunology, 2012, 1, 572-574.	2.1	20
68	Array-Based Disease Diagnostics Using Lipid/Polydiacetylene Vesicles Encapsulated in a Sol–Gel Matrix. Analytical Chemistry, 2012, 84, 5925-5931.	3.2	33
69	Human NK cell recognition of target cells in the prism of natural cytotoxicity receptors and their ligands. Journal of Immunotoxicology, 2012, 9, 267-274.	0.9	24
70	Dual fluorescent labelling of the human malaria parasite Plasmodium falciparum for the analysis of the ABC type transporter pfmdr2. Malaria Journal, 2012, 11, 371.	0.8	5
71	Glycans in Sera of Amyotrophic Lateral Sclerosis Patients and Their Role in Killing Neuronal Cells. PLoS ONE, 2012, 7, e35772.	1.1	34
72	Serum Apolipoproteins C-I and C-III Are Reduced in Stomach Cancer Patients: Results from MALDI-Based Peptidome and Immuno-Based Clinical Assays. PLoS ONE, 2011, 6, e14540.	1.1	43

Angel Porgador

#	Article	IF	CITATIONS
73	The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk. PLoS ONE, 2011, 6, e23472.	1.1	38
74	Human NK Cells Are Alerted to Induction of p53 in Cancer Cells by Upregulation of the NKG2D Ligands ULBP1 and ULBP2. Cancer Research, 2011, 71, 5998-6009.	0.4	178
75	Proliferating Cell Nuclear Antigen Is a Novel Inhibitory Ligand for the Natural Cytotoxicity Receptor NKp44. Journal of Immunology, 2011, 187, 5693-5702.	0.4	176
76	Recognition and Killing of Human and Murine Pancreatic Î ² Cells by the NK Receptor NKp46. Journal of Immunology, 2011, 187, 3096-3103.	0.4	53
77	Chimeric vaccine composed of viral peptide and mammalian heatâ€shock protein 60 peptide protects against West Nile virus challenge. Immunology, 2010, 130, 527-535.	2.0	15
78	The activating receptor NKp46 is essential for the development of type 1 diabetes. Nature Immunology, 2010, 11, 121-128.	7.0	157
79	Sialylation of 3-Methylcholanthrene–Induced Fibrosarcoma Determines Antitumor Immune Responses during Immunoediting. Journal of Immunology, 2010, 185, 5869-5878.	0.4	64
80	Killing of Avian and Swine Influenza Virus by Natural Killer Cells. Journal of Virology, 2010, 84, 3993-4001.	1.5	62
81	NKp46 O-Glycan Sequences That Are Involved in the Interaction with Hemagglutinin Type 1 of Influenza Virus. Journal of Virology, 2010, 84, 3789-3797.	1.5	45
82	Generating NK Cell Receptor-Fc Chimera Proteins from 293T Cells and Considerations of Appropriate Glycosylation. Methods in Molecular Biology, 2010, 612, 275-283.	0.4	2
83	Host-Derived Interleukin-1α Is Important in Determining the Immunogenicity of 3-Methylcholantrene Tumor Cells. Journal of Immunology, 2009, 182, 4874-4881.	0.4	29
84	NKp44 Receptor Mediates Interaction of the Envelope Glycoproteins from the West Nile and Dengue Viruses with NK Cells. Journal of Immunology, 2009, 183, 2610-2621.	0.4	124
85	Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. BMC Infectious Diseases, 2009, 9, 18.	1.3	80
86	Natural Cytotoxicity Receptors NKp30, NKp44 and NKp46 Bind to Different Heparan Sulfate/Heparin Sequences. Journal of Proteome Research, 2009, 8, 712-720.	1.8	132
87	Lipoprotein interactions with chromatic membranes as a novel marker for oxidative stress-related diseases. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2436-2443.	1.4	5
88	Activating NK cell receptor ligands are differentially expressed during progression to cervical cancer. International Journal of Cancer, 2008, 123, 2343-2353.	2.3	56
89	Expression of Ligands to NKp46 in Benign and Malignant Melanocytes. Journal of Investigative Dermatology, 2008, 128, 972-979.	0.3	42
90	Cell type-specific DNA methylation patterns in the human breast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14076-14081.	3.3	210

#	Article	IF	CITATIONS
91	H5-Type Influenza Virus Hemagglutinin Is Functionally Recognized by the Natural Killer-Activating Receptor NKp44. Journal of Virology, 2008, 82, 2028-2032.	1.5	71
92	Dengue Virus Replicon Expressing the Nonstructural Proteins Suffices To Enhance Membrane Expression of HLA Class I and Inhibit Lysis by Human NK Cells. Journal of Virology, 2008, 82, 7666-7676.	1.5	59
93	Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Glycobiology, 2008, 18, 28-41.	1.3	53
94	Harnessing Soluble NK Cell Killer Receptors for the Generation of Novel Cancer Immune Therapy. PLoS ONE, 2008, 3, e2150.	1.1	30
95	Flamingo Cadherin: A Putative Host Receptor forStreptococcus pneumoniae. Journal of Infectious Diseases, 2007, 195, 1828-1837.	1.9	64
96	<i>Streptococcus pneumoniae</i> Surfaceâ€Exposed Glutamyl tRNA Synthetase, a Putative Adhesin, Is Able to Induce a Partially Protective Immune Response in Mice. Journal of Infectious Diseases, 2007, 196, 945-953.	1.9	18
97	Characterization of the Recognition of Tumor Cells by the Natural Cytotoxicity Receptor, NKp44. Biochemistry, 2007, 46, 7426-7436.	1.2	59
98	T7 phage display of Ep15 peptide for the detection of WNV IgG. Journal of Virological Methods, 2007, 141, 133-140.	1.0	23
99	CD100 on NK Cells Enhance IFNÎ ³ Secretion and Killing of Target Cells Expressing CD72. PLoS ONE, 2007, 2, e818.	1.1	30
100	Rapid Chromatic Detection of Bacteria by Use of a New Biomimetic Polymer Sensor. Applied and Environmental Microbiology, 2006, 72, 7339-7344.	1.4	85
101	Models of West Nile virus disease. Drug Discovery Today: Disease Models, 2006, 3, 49-54.	1.2	2
102	Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice. Clinical and Experimental Immunology, 2006, 144, 254-263.	1.1	48
103	Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nature Immunology, 2006, 7, 517-523.	7.0	503
104	Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 2006, 12, 1065-1074.	15.2	1,456
105	Vimentin Expressed on <i>Mycobacterium tuberculosis</i> -Infected Human Monocytes Is Involved in Binding to the NKp46 Receptor. Journal of Immunology, 2006, 177, 6192-6198.	0.4	167
106	Tumor Vaccination by Salmonella typhimurium After Transformation with a Eukaryotic Expression Vector in Mice. Journal of Immunotherapy, 2005, 28, 467-479.	1.2	13
107	Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nature Immunology, 2005, 6, 515-523.	7.0	327
108	Natural Cytotoxicity Receptors: Pattern Recognition and Involvement of Carbohydrates. Scientific World Journal, The, 2005, 5, 151-154.	0.8	10

7

#	Article	IF	CITATIONS
109	Role of NK Cell-Activating Receptors and Their Ligands in the Lysis of Mononuclear Phagocytes Infected with an Intracellular Bacterium. Journal of Immunology, 2005, 175, 4611-4617.	0.4	188
110	Characterization of the Heparin/Heparan Sulfate Binding Site of the Natural Cytotoxicity Receptor NKp46â€. Biochemistry, 2005, 44, 14477-14485.	1.2	49
111	Self HSP60 peptide serves as an immunogenic carrier for a CTL epitope against persistence of murine cytomegalovirus in the salivary gland. Vaccine, 2005, 23, 3508-3518.	1.7	14
112	Membrane-Associated Heparan Sulfate Proteoglycans Are Involved in the Recognition of Cellular Targets by NKp30 and NKp46. Journal of Immunology, 2004, 173, 2392-2401.	0.4	146
113	Identification of Salmonella typhimurium genes responsible for interference with peptide presentation on MHC class I molecules: Deltayej Salmonella mutants induce superior CD8+ T-cell responses. Cellular Microbiology, 2004, 6, 1057-1070.	1.1	32
114	Non-replicating mucosal and systemic vaccines: quantitative and qualitative differences in the Ag-specific CD8+ T cell population in different tissues. Vaccine, 2004, 22, 1390-1394.	1.7	14
115	The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood, 2004, 103, 664-672.	0.6	225
116	The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. Blood, 2004, 103, 1770-1778.	0.6	62
117	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2004, 114, 1612-1623.	3.9	136
118	Reliable determination of transposon insertion site in prokaryotes by direct sequencing. Journal of Microbiological Methods, 2003, 54, 137-140.	0.7	9
119	The NKp46 Receptor Contributes to NK Cell Lysis of Mononuclear Phagocytes Infected with an Intracellular Bacterium. Journal of Immunology, 2002, 168, 3451-3457.	0.4	142
120	NKp46. International Journal of Biochemistry and Cell Biology, 2001, 33, 1147-1150.	1.2	49
121	Recognition of viral hemagglutinins by NKp44 but not by NKp30. European Journal of Immunology, 2001, 31, 2680-2689.	1.6	357
122	Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 2001, 409, 1055-1060.	13.7	844
123	DNA-Based Vaccines: Role of Dendritic Cells in Antigen Presentation. , 2000, 479, 175-184.		3
124	Peptideâ€receptive class I major histocompatibility complex molecules on TAPâ€deficient and wildâ€type cells and their roles in the processing of exogenous antigens. Immunology, 1999, 97, 316-324.	2.0	25
125	Calnexin expression does not enhance the generation of MHC class I-peptide complexes. European Journal of Immunology, 1998, 28, 907-913.	1.6	27
126	Predominant Role for Directly Transfected Dendritic Cells in Antigen Presentation to CD8+ T Cells after Gene Gun Immunization. Journal of Experimental Medicine, 1998, 188, 1075-1082.	4.2	539

#	Article	IF	CITATIONS
127	Calnexin expression does not enhance the generation of MHC class I-peptide complexes. European Journal of Immunology, 1998, 28, 907-913.	1.6	1
128	Intranasal Immunization with Cytotoxic T-Lymphocyte Epitope Peptide and Mucosal Adjuvant Cholera Toxin: Selective Augmentation of Peptide-Presenting Dendritic Cells in Nasal Mucosa-Associated Lymphoid Tissue. Infection and Immunity, 1998, 66, 5876-5881.	1.0	58
129	Production of a Specific Major Histocompatibility Complex Class I-restricted Epitope by Ubiquitin-dependent Degradation of Modified Ovalbumin in Lymphocyte Lysate. Journal of Biological Chemistry, 1997, 272, 21060-21066.	1.6	15
130	Localization, Quantitation, and In Situ Detection of Specific Peptide–MHC Class I Complexes Using a Monoclonal Antibody. Immunity, 1997, 6, 715-726.	6.6	641
131	Direct delivery of exogenous MHC class I molecule-binding oligopeptides to the endoplasmic reticulum of viable cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8064-8069.	3.3	91
132	Natural killer cell lines kill autologous Â2-microglobulin-deficient melanoma cells: Implications for cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13140-13145.	3.3	95
133	Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes Journal of Experimental Medicine, 1995, 182, 255-260.	4.2	351
134	Effective anti-metastatic melanoma vaccination with tumor cells transfected with MHC genes and/or infected with newcastle disease virus (NDV). International Journal of Cancer, 1994, 59, 796-801.	2.3	43
135	Anti-metastatic vaccination of tumor-bearing mice with il-2-gene-inserted tumor cells. International Journal of Cancer, 1993, 53, 471-477.	2.3	96
136	Abrogation of B16 Melanoma Metastases by Long-Term Low-Dose Interleukin-6 Therapy. Journal of Immunotherapy, 1993, 13, 98-109.	1.2	27
137	Immunotherapy Via Gene Therapy. Journal of Immunotherapy, 1993, 14, 191-201.	1.2	38
138	Immunization by gamma-IFN-treated B16-F10.9 melanoma cells protects against metastatic spread of the parental tumor. International Journal of Cancer, 1991, 47, 54-60.	2.3	23