
Teresa Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7917852/publications.pdf Version: 2024-02-01

TEDESA MODALES

#	Article	IF	CITATIONS
1	Prolactin Attenuates Neuroinflammation in LPS-Activated SIM-A9 Microglial Cells by Inhibiting NF-κB Pathways Via ERK1/2. Cellular and Molecular Neurobiology, 2022, 42, 2171-2186.	1.7	6
2	Neuroimmunoendocrine Link Between Chronic Kidney Disease and Olfactory Deficits. Frontiers in Integrative Neuroscience, 2022, 16, 763986.	1.0	4
3	Rabbits can be conditioned in a food-induced place preference paradigm. Brain Research, 2022, 1781, 147815.	1.1	3
4	Prolactin neuroprotective action against excitotoxic insult in the hippocampus of male mice. Peptides, 2021, 135, 170425.	1.2	9
5	Sexually dimorphic effects of prolactin treatment on the onset of puberty and olfactory function in mice. General and Comparative Endocrinology, 2021, 301, 113652.	0.8	3
6	Enfermedad renal crónica y olfato. Nefrologia, 2020, 40, 120-125.	0.2	11
7	Reproductive status impact on tau phosphorylation induced by chronic stress. Neurobiology of Stress, 2020, 13, 100241.	1.9	4
8	Prolactin treatment reduces kainic acid-induced gliosis in the hippocampus of ovariectomized female rats. Brain Research, 2020, 1746, 147014.	1.1	9
9	Chronic kidney disease and the olfactory system. Nefrologia, 2020, 40, 120-125.	0.2	5
10	Fatherhood diminishes the hippocampal damaging action of excitotoxic lesioning in mice. Journal of Neuroendocrinology, 2019, 31, e12783.	1.2	6
11	Cover Image, Volume 527, Issue 18. Journal of Comparative Neurology, 2019, 527, C1.	0.9	0
12	Anorexia increases microglial density and cytokine expression in the hippocampus of young female rats. Behavioural Brain Research, 2019, 363, 118-125.	1.2	12
13	Melaninâ€concentrating hormone peptidergic system: Comparative morphology between muroid species. Journal of Comparative Neurology, 2019, 527, 2973-3001.	0.9	24
14	Lactation diminishes lesion-induced permeability of tracers into the brain. Brain Research Bulletin, 2019, 144, 92-100.	1.4	3
15	Glial cells as mediators of protective actions of prolactin (PRL) in the CNS. General and Comparative Endocrinology, 2018, 265, 106-110.	0.8	17
16	Upregulation of GH, but not IGF1, in the hippocampus of the lactating dam after kainic acid injury. Endocrine Connections, 2018, 7, 258-267.	0.8	7
17	Tau Phosphorylation in Female Neurodegeneration: Role of Estrogens, Progesterone, and Prolactin. Frontiers in Endocrinology, 2018, 9, 133.	1.5	32
18	Decreased food anticipatory activity of obese mice relates to hypothalamic c-Fos expression. Physiology and Behavior, 2017, 179, 9-15.	1.0	10

TERESA MORALES

#	Article	IF	CITATIONS
19	Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus. Neural Plasticity, 2016, 2016, 1-11.	1.0	20
20	Post-treatment with prolactin protects hippocampal CA1 neurons of the ovariectomized female rat against kainic acid-induced neurodegeneration. Neuroscience, 2016, 328, 58-68.	1.1	25
21	Microglia modulate respiratory rhythm generation and autoresuscitation. Clia, 2016, 64, 603-619.	2.5	42
22	Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor. Brain Research, 2016, 1636, 193-199.	1.1	35
23	Reproductive Stage and Modulation of Stressâ€Induced Tau Phosphorylation in Female Rats. Journal of Neuroendocrinology, 2015, 27, 827-834.	1.2	10
24	Hormonal influences on neuroimmune responses in the CNS of females. Frontiers in Integrative Neuroscience, 2014, 7, 110.	1.0	5
25	Both prolactin (PRL) and a molecular mimic of phosphorylated PRL, S179D-PRL, protect the hippocampus of female rats against excitotoxicity. Neuroscience, 2014, 258, 211-217.	1.1	35
26	Prolactin fractions from lactating rats elicit effects upon sensory spinal cord cells of male rats. Neuroscience, 2013, 248, 552-561.	1.1	6
27	Lactation <scp>R</scp> educes <scp>G</scp> lial <scp>A</scp> ctivation <scp>I</scp> nduced by <scp>E</scp> xcitotoxicity in the <scp>R</scp> at <scp>H</scp> ippocampus. Journal of Neuroendocrinology, 2013, 25, 519-527.	1.2	26
28	Trophic Actions of Prolactin in the Central Nervous System. Advances in Neuroimmune Biology, 2012, 3, 49-55.	0.7	0
29	Recent Findings on Neuroprotection Against Excitotoxicity in the Hippocampus of Female Rats. Journal of Neuroendocrinology, 2011, 23, 994-1001.	1.2	39
30	Nitric oxide has a role in attenuating the neuroendocrine response to anaphylactoid stress during lactation. Brain Research, 2011, 1402, 54-66.	1.1	3
31	Prolactin Released in vitro from the Pituitary of Lactating, Pregnant, and Steroid-Treated Female or Male Rats Stimulates Prolactin Secretion from Pituitary Lactotropes of Male Rats. Neuroendocrinology, 2010, 91, 77-93.	1.2	4
32	Prolactin reduces the damaging effects of excitotoxicity in the dorsal hippocampus of the female rat independently of ovarian hormones. Neuroscience, 2010, 169, 1178-1185.	1.1	48
33	Estrogen receptors increased expression during hippocampal neuroprotection in lactating rats. Journal of Steroid Biochemistry and Molecular Biology, 2009, 116, 1-7.	1.2	11
34	Lactation is a natural model of hippocampus neuroprotection against excitotoxicity. Neuroscience Letters, 2009, 461, 136-139.	1.0	34
35	Maternal hyperthyroidism in rats impairs stress coping of adult offspring. Journal of Neuroscience Research, 2008, 86, 1306-1315.	1.3	22
36	Changes in câ€Fos and NOS Expression in the PVH of Lactating Rats in Response to Excitotoxicity and Stress. Annals of the New York Academy of Sciences, 2008, 1148, 161-164.	1.8	5

TERESA MORALES

#	Article	IF	CITATIONS
37	Suckling-induced oxytocin increase in the spinal cord of the rat. Brain Research, 2008, 1236, 85-92.	1.1	6
38	Fos expression induced by milk ingestion in the caudal brainstem of neonatal rats. Brain Research, 2008, 1241, 76-83.	1.1	5
39	Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat. Hormones and Behavior, 2008, 53, 112-123.	1.0	44
40	Vesicular Release of Prolactin from Preformed Prolactin Granules Is Stimulated by Soluble Factor(s) from the Anterior Pituitary of Lactating Rats. Neuroendocrinology, 2007, 85, 1-15.	1.2	4
41	Enhanced inhibitory avoidance learning prevents the memory-impairing effects of post-training hippocampal inactivation. Experimental Brain Research, 2003, 153, 400-402.	0.7	35
42	Progesterone receptor gene and protein expression in the anterior preoptic area and hypothalamus of defeminized rats. Journal of Neurobiology, 2003, 56, 338-346.	3.7	10
43	Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience, 2003, 121, 771-778.	1.1	46
44	Suckling-induced activation of neural c-fos expression at lower thoracic rat spinal cord segments. Brain Research, 2002, 954, 100-114.	1.1	17
45	Sympathetic innervation of mammary glands mediates suckling-induced reflex inhibition of milk yield in rats. Physiology and Behavior, 2001, 74, 37-43.	1.0	5
46	β-Adrenergic mechanisms modulate central nervous system effects of prolactin on milk ejection. Physiology and Behavior, 2001, 74, 119-126.	1.0	2
47	Prolactin-Releasing Peptide is Expressed in Afferents to the Endocrine Hypothalamus, but not in Neurosecretory Neurones. Journal of Neuroendocrinology, 2001, 12, 131-140.	1.2	66
48	Mammary Gland Sympathetic Innervation Is a Major Component in Type 1 Deiodinase Regulation. Endocrine, 1999, 11, 115-122.	2.2	14
49	Effect of posterior pituitary lobectomy on in vivo and in vitro secretion of prolactin in lactating rats. Endocrine, 1996, 5, 285-290.	2.2	7
50	Effects of Centrally Administered Prolactin upon Mammary Contractility in Anesthetized Lactating Rats. Neuroendocrinology, 1995, 62, 207-214.	1.2	3
51	Central Effects of Catecholamines upon Mammary Contractility in Rats Are Neurally Mediated. Neuroendocrinology, 1995, 61, 722-730.	1.2	12
52	Changes in molecular variants during in vitro transformation and release of prolactin by the pituitary gland of the lactating rat. Endocrinology, 1992, 130, 3365-3377.	1.4	4
53	Regulation of Prolactin Secretion by Dopamine and Thyrotropin-Releasing Hormone in Lactating Rat Adenohypophyses: Influence of Intracellular Age of the Hormone*. Endocrinology, 1989, 125, 1814-1820.	1.4	18
54	Investigation into the role of dopamine and lysosomes in the impairment of prolactin transformation and release imposed by long periods of non-suckling in the rat. European Journal of Endocrinology, 1987, 114, 371-378.	1.9	3

#	Article	IF	CITATIONS
55	Reversal by Thiols of Dopamine-, Stalk-Median Eminence-, and Zinc-Induced Inhibition of Prolactin Transformation in Adenohypophyses of Lactating Rats*. Endocrinology, 1986, 118, 1803-1807.	1.4	15
56	Release of Catecholamines Follows Suckling or Electrical Stimulation of Mammary Nerve in Lactating Rats*. Endocrinology, 1985, 117, 2498-2504.	1.4	27