Guang Chu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7917525/guang-chu-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 556 15 23 g-index

29 668 7.5 avg, IF L-index

#	Paper	IF	Citations
28	Dispersing swimming microalgae in self-assembled nanocellulose suspension: Unveiling living colloid dynamics in cholesteric liquid crystals <i>Journal of Colloid and Interface Science</i> , 2022 , 622, 978-9	8 <i>9</i> ·3	O
27	Self-Assembled Nanorods and Microspheres for Functional Photonics: Retroreflector Meets Microlens Array (Advanced Optical Materials 9/2021). <i>Advanced Optical Materials</i> , 2021 , 9, 2170034	8.1	
26	Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. <i>Annual Review of Food Science and Technology</i> , 2021 , 12, 383-406	14.7	18
25	Self-Assembled Nanorods and Microspheres for Functional Photonics: Retroreflector Meets Microlens Array. <i>Advanced Optical Materials</i> , 2021 , 9, 2002258	8.1	5
24	Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. <i>Langmuir</i> , 2020 , 36, 979-985	4	7
23	When nanocellulose meets diffraction grating: freestanding photonic paper with programmable optical coupling. <i>Materials Horizons</i> , 2020 , 7, 511-519	14.4	19
22	All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly. <i>ACS Nano</i> , 2020 , 14, 13380-13390	16.7	20
21	Printing Flowers? Custom-Tailored Photonic Cellulose Films with Engineered Surface Topography. <i>Matter</i> , 2019 , 1, 988-1000	12.7	23
20	Modulating the Structural Orientation of Nanocellulose Composites through Mechano-Stimuli. <i>ACS Applied Materials & Applied & </i>	9.5	17
19	Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	4
18	Exclusion and Trapping of Carbon Nanostructures in Nonisotropic Suspensions of Cellulose Nanostructures. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 3535-3542	3.4	O
17	pH-Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2019 , 57, 1527-1536	2.6	6
16	Structure Evolution and Drying Dynamics in Sliding Cholesteric Cellulose Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1845-1851	6.4	22
15	From Chaos to Order: Evaporative Assembly and Collective Behavior in Drying Liquid Crystal Droplets. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4795-4801	6.4	7
14	Controlled Assembly of Nanocellulose-Stabilized Emulsions with Periodic Liquid Crystal-in-Liquid Crystal Organization. <i>Langmuir</i> , 2018 , 34, 13263-13273	4	12
13	Ice-Assisted Assembly of Liquid Crystalline Cellulose Nanocrystals for Preparing Anisotropic Aerogels with Ordered Structures. <i>Chemistry of Materials</i> , 2017 , 29, 3980-3988	9.6	52
12	Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids. <i>Angewandte Chemie</i> , 2017 , 129, 8877-8881	3.6	7

LIST OF PUBLICATIONS

1	11	Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids. Angewandte Chemie - International Edition, 2017 , 56, 8751-8755	16.4	9
1	(O	Detection of 6-Mercaptopurine by silver nanowires-coated silicon wafer based on surface-enhanced Raman scattering spectroscopy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 508, 309-315	5.1	15
Ş	9	Ultrafast Optical Modulation of Rationally Engineered Photonic P lasmonic Coupling in Self-Assembled Nanocrystalline Cellulose/Silver Hybrid Material. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27541-27547	3.8	16
8	3	Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1764-1768	7.1	29
7	7	Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe(3.). <i>Dalton Transactions</i> , 2016 , 45, 508-14	4.3	21
6	6	Self-organized helical superstructure of photonic cellulose loaded with upconversion nanoparticles showing modulated luminescence. <i>RSC Advances</i> , 2016 , 6, 76231-76236	3.7	7
5	5	Optically Tunable Chiral Plasmonic Guest-Host Cellulose Films Weaved with Long-range Ordered Silver Nanowires. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 11863-70	9.5	61
2	1	Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanorods and Gold Nanoparticles. <i>ACS Applied Materials & Description of Self-Assembled Cellulose</i> Nanoparticles.	9.5	59
3	3	Chiral electronic transitions of YVO4:Eu3+ nanoparticles in cellulose based photonic materials with circularly polarized excitation. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3384-3390	7.1	48
2	2	Chiral nematic mesoporous films of Y2O3:Eu3+ with tunable optical properties and modulated photoluminescence. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9189-9195	7.1	26
1		Chiral nematic mesoporous films of ZrOŒu□+: new luminescent materials. <i>Dalton Transactions</i> , 2014 , 43, 15321-7	4.3	46