Guang Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7917525/publications.pdf Version: 2024-02-01

CHANC CHIL

#	Article	IF	CITATIONS
1	Optically Tunable Chiral Plasmonic Guest–Host Cellulose Films Weaved with Long-range Ordered Silver Nanowires. ACS Applied Materials & Interfaces, 2015, 7, 11863-11870.	4.0	69
2	Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 21797-21806.	4.0	69
3	Ice-Assisted Assembly of Liquid Crystalline Cellulose Nanocrystals for Preparing Anisotropic Aerogels with Ordered Structures. Chemistry of Materials, 2017, 29, 3980-3988.	3.2	65
4	Chiral electronic transitions of YVO ₄ :Eu ³⁺ nanoparticles in cellulose based photonic materials with circularly polarized excitation. Journal of Materials Chemistry C, 2015, 3, 3384-3390.	2.7	54
5	Chiral nematic mesoporous films of ZrO ₂ :Eu ³⁺ : new luminescent materials. Dalton Transactions, 2014, 43, 15321-15327.	1.6	50
6	All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly. ACS Nano, 2020, 14, 13380-13390.	7.3	41
7	Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 2021, 12, 383-406.	5.1	41
8	Printing Flowers? Custom-Tailored Photonic Cellulose Films with Engineered Surface Topography. Matter, 2019, 1, 988-1000.	5.0	36
9	Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. Journal of Materials Chemistry C, 2016, 4, 1764-1768.	2.7	35
10	Structure Evolution and Drying Dynamics in Sliding Cholesteric Cellulose Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 1845-1851.	2.1	30
11	When nanocellulose meets diffraction grating: freestanding photonic paper with programmable optical coupling. Materials Horizons, 2020, 7, 511-519.	6.4	30
12	Chiral nematic mesoporous films of Y ₂ O ₃ :Eu ³⁺ with tunable optical properties and modulated photoluminescence. Journal of Materials Chemistry C, 2014, 2, 9189-9195.	2.7	28
13	Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe ³⁺ . Dalton Transactions, 2016, 45, 508-514.	1.6	25
14	Modulating the Structural Orientation of Nanocellulose Composites through Mechano-Stimuli. ACS Applied Materials & Interfaces, 2019, 11, 40443-40450.	4.0	25
15	Selfâ€Assembled Nanorods and Microspheres for Functional Photonics: Retroreflector Meets Microlens Array. Advanced Optical Materials, 2021, 9, 2002258.	3.6	23
16	Detection of 6-Mercaptopurine by silver nanowires-coated silicon wafer based on surface-enhanced Raman scattering spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 309-315.	2.3	19
17	Ultrafast Optical Modulation of Rationally Engineered Photonic–Plasmonic Coupling in Self-Assembled Nanocrystalline Cellulose/Silver Hybrid Material. Journal of Physical Chemistry C, 2016, 120, 27541-27547	1.5	19
18	Controlled Assembly of Nanocellulose-Stabilized Emulsions with Periodic Liquid Crystal-in-Liquid Crystal Organization. Langmuir, 2018, 34, 13263-13273.	1.6	17

GUANG CHU

#	Article	IF	CITATIONS
19	pHâ€Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1527-1536.	2.4	14
20	Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. Langmuir, 2020, 36, 979-985.	1.6	14
21	Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids. Angewandte Chemie - International Edition, 2017, 56, 8751-8755.	7.2	12
22	Self-organized helical superstructure of photonic cellulose loaded with upconversion nanoparticles showing modulated luminescence. RSC Advances, 2016, 6, 76231-76236.	1.7	11
23	Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids. Angewandte Chemie, 2017, 129, 8877-8881.	1.6	9
24	From Chaos to Order: Evaporative Assembly and Collective Behavior in Drying Liquid Crystal Droplets. Journal of Physical Chemistry Letters, 2018, 9, 4795-4801.	2.1	9
25	Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 19324-19330.	4.0	9
26	Dispersing swimming microalgae in self-assembled nanocellulose suspension: Unveiling living colloid dynamics in cholesteric liquid crystals. Journal of Colloid and Interface Science, 2022, 622, 978-985.	5.0	4
27	Exclusion and Trapping of Carbon Nanostructures in Nonisotropic Suspensions of Cellulose Nanostructures. Journal of Physical Chemistry B, 2019, 123, 3535-3542.	1.2	2
28	Selfâ€Assembled Nanorods and Microspheres for Functional Photonics: Retroreflector Meets Microlens Array (Advanced Optical Materials 9/2021). Advanced Optical Materials, 2021, 9, 2170034.	3.6	0
29	Printing Flowers? Custom-Tailored Photonic Cellulose Films with Engineered Surface Topography. SSRN Electronic Journal. 0	0.4	0