
Rikke Hedegaard Dahlrot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7917486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumourâ€associated microglia/macrophages predict poor prognosis in highâ€grade gliomas and correlate with an aggressive tumour subtype. Neuropathology and Applied Neurobiology, 2018, 44, 185-206.	3.2	178
2	MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. Journal of Neuro-Oncology, 2013, 111, 71-81.	2.9	87
3	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	6.4	76
4	High levels of c-Met is associated with poor prognosis in glioblastoma. Journal of Neuro-Oncology, 2015, 122, 517-527.	2.9	62
5	Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS ONE, 2017, 12, e0182954.	2.5	61
6	What is the clinical value of cancer stem cell markers in gliomas?. International Journal of Clinical and Experimental Pathology, 2013, 6, 334-48.	0.5	59
7	Expression and prognostic value of the WEE1 kinase in gliomas. Journal of Neuro-Oncology, 2016, 127, 381-389.	2.9	48
8	Prognostic value of Musashi-1 in gliomas. Journal of Neuro-Oncology, 2013, 115, 453-461.	2.9	46
9	Quality of life in patients with cancer during the COVID-19 pandemic – a Danish cross-sectional study (COPICADS). Acta Oncológica, 2021, 60, 4-12.	1.8	39
10	Clinical value of CD133 and nestin in patients with glioma: a population-based study. International Journal of Clinical and Experimental Pathology, 2014, 7, 3739-51.	0.5	39
11	Prognostic value of Oâ€6â€methylguanine–DNA methyltransferase (MGMT) protein expression in glioblastoma excluding nontumour cells from the analysis. Neuropathology and Applied Neurobiology, 2018, 44, 172-184.	3.2	34
12	A population-based study of low-grade gliomas and mutated isocitrate dehydrogenase 1 (IDH1). Journal of Neuro-Oncology, 2013, 114, 309-317.	2.9	33
13	A population-based study of high-grade gliomas and mutated isocitrate dehydrogenase 1. International Journal of Clinical and Experimental Pathology, 2013, 6, 31-40.	0.5	29
14	Evaluation of the proliferation marker Ki-67 in gliomas: Interobserver variability and digital quantification. Diagnostic Pathology, 2018, 13, 38.	2.0	28
15	Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype. PLoS ONE, 2016, 11, e0155106.	2.5	23
16	Prognostic role of Ki-67 in glioblastomas excluding contribution from non-neoplastic cells. Scientific Reports, 2021, 11, 17918.	3.3	22
17	Posttreatment Effect of MGMT Methylation Level on Glioblastoma Survival. Journal of Neuropathology and Experimental Neurology, 2019, 78, 633-640.	1.7	19
18	Expression and prognostic value of JAM-A in gliomas. Journal of Neuro-Oncology, 2017, 135, 107-117.	2.9	15

#	Article	IF	CITATIONS
19	The prognostic value of clinical factors and cancer stem cell-related markers in gliomas. Danish Medical Journal, 2014, 61, B4944.	0.5	15
20	Plan quality for high-risk prostate cancer treated with high field magnetic resonance imaging guided radiotherapy. Physics and Imaging in Radiation Oncology, 2018, 7, 1-8.	2.9	14
21	Evolution of the gross tumour volume extent during radiotherapy for glioblastomas. Radiotherapy and Oncology, 2021, 160, 40-46.	0.6	12
22	Development and validation of a prognostic model for recurrent glioblastoma patients treated with bevacizumab and irinotecan. Acta Oncológica, 2016, 55, 418-422.	1.8	11
23	APNG as a prognostic marker in patients with glioblastoma. PLoS ONE, 2017, 12, e0178693.	2.5	11
24	Determining viability of using APNG status as a prognostic marker in patients with glioblastoma multiforme Journal of Clinical Oncology, 2015, 33, 2028-2028.	1.6	11
25	Novel approaches for quantifying proteinÂbiomarkers in gliomas: benefitsÂand pitfalls. CNS Oncology, 2014, 3, 287-298.	3.0	10
26	Trends in tumors in the central nervous system in elderly in Denmark, 2008–2012. Acta Oncológica, 2016, 55, 91-97.	1.8	10
27	Targeted nextâ€generation sequencing of adult gliomas for retrospective prognostic evaluation and upâ€front diagnostics. Neuropathology and Applied Neurobiology, 2021, 47, 108-126.	3.2	10
28	Study protocol for OptimalTTF-2: enhancing Tumor Treating Fields with skull remodeling surgery for first recurrence glioblastoma: a phase 2, multi-center, randomized, prospective, interventional trial. BMC Cancer, 2021, 21, 1010.	2.6	10
29	A national study on the inter-observer variability in the delineation of organs at risk in the brain. Acta Oncológica, 2021, 60, 1548-1554.	1.8	10
30	Aberrant neuronal differentiation is common in glioma but is associated neither with epileptic seizures nor with better survival. Scientific Reports, 2018, 8, 14965.	3.3	6
31	Treatment plan comparison of proton vs photon radiotherapy for lower-grade gliomas. Physics and Imaging in Radiation Oncology, 2021, 20, 98-104.	2.9	4
32	Metastatic atypical renal tumour with metanephric characteristics treated with Sunitinib. Urology Case Reports, 2022, 40, 101880.	0.3	2
33	Endonasal Endoscopic Approach for Minimally Invasive Orbital Decompression in Nonthyroid Proptosis—A Scoping Review. World Neurosurgery, 2022, 162, 85-90.	1.3	1
34	The Epigenetic Regulator Jumonji Domain-Containing Protein 6 (JMJD6) Is Highly Expressed but Not Prognostic in IDH-Wildtype Glioblastoma Patients. Journal of Neuropathology and Experimental Neurology, 2022, 81, 54-60.	1.7	1
35	STEM-13EXPRESSION OF STEM CELL, PROLIFERATION AND CHEMORESISTANCE MARKERS IN GLIOMA CELLS IN THE TUMOR PERIPHERY. Neuro-Oncology, 2015, 17, v210.5-v211.	1.2	0
36	TMIC-18TUMOR-ASSOCIATED MICROGLIA/MACROPHAGES ARE ASSOCIATED WITH POOR PROGNOSIS IN HIGH-GRADE GLIOMAS AND CONTRIBUTE TO THE GLIOBLASTOMA STEM CELL-LIKE NICHES. Neuro-Oncology, 2015, 17, v218.6-v218.	1.2	0

#	Article	IF	CITATIONS
37	P04.25 Expression and prognostic value of the transcription factors EGR1 and EGR3 in gliomas. Neuro-Oncology, 2018, 20, iii284-iii284.	1.2	0
38	P01.114 Expression and prognostic value of the immune checkpoint molecule galectin-9 in glioblastomas. Neuro-Oncology, 2018, 20, iii257-iii258.	1.2	0
39	P01.083 Expression and prognostic value of the immune checkpoint molecule galectin-9 in glioblastomas. Neuro-Oncology, 2018, 20, iii249-iii249.	1.2	0
40	P04.41 Expression and prognostic value of the transcription factors EGR1 and EGR3 in gliomas. Neuro-Oncology, 2018, 20, iii288-iii288.	1.2	0
41	GENE-33. INTEGRATED GLIOMA DIAGNOSTICS USING TARGETED NEXT-GENERATION SEQUENCING. Neuro-Oncology, 2019, 21, vi104-vi104.	1.2	0
42	P14.69 Trends in postoperative chemoradiotherapy for Glioblastoma patients: a Danish cohort study. Neuro-Oncology, 2021, 23, ii51-ii51.	1.2	0
43	C-met, a new prognostic biomarker in glioblastoma multiforme Journal of Clinical Oncology, 2013, 31, 2088-2088.	1.6	Ο