
Sandrine Morel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7917449/publications.pdf Version: 2024-02-01

SANDRINE MODEL

#	Article	IF	CITATIONS
1	Primary cilia control endothelial permeability by regulating expression and location of junction proteins. Cardiovascular Research, 2022, 118, 1583-1596.	1.8	12
2	Intracranial aneurysm wall (in)stability–current state of knowledge and clinical perspectives. Neurosurgical Review, 2022, 45, 1233-1253.	1.2	9
3	Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol. Translational Stroke Research, 2022, 13, 565-576.	2.3	5
4	Bayesian network analysis reveals the interplay of intracranial aneurysm rupture risk factors. Computers in Biology and Medicine, 2022, 147, 105740.	3.9	8
5	Detecting early myocardial ischemia in rat heart by MALDI imaging mass spectrometry. Scientific Reports, 2021, 11, 5135.	1.6	6
6	Activation of the Hypoxia-Inducible Factor Pathway Inhibits Epithelial Sodium Channel–Mediated Sodium Transport in Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2021, 32, 3130-3145.	3.0	9
7	Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Frontiers in Physiology, 2021, 12, 727338.	1.3	10
8	Effect of Aneurysm and Patient Characteristics on Intracranial Aneurysm Wall Thickness. Frontiers in Cardiovascular Medicine, 2021, 8, 775307.	1.1	8
9	Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nature Genetics, 2020, 52, 1303-1313.	9.4	163
10	Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules, 2020, 10, 1225.	1.8	24
11	Shape irregularity of the intracranial aneurysm lumen exhibits diagnostic value. Acta Neurochirurgica, 2020, 162, 2261-2270.	0.9	10
12	A Genetic Polymorphism in the Pannexin1 Gene Predisposes for The Development of Endothelial Dysfunction with Increasing BMI. Biomolecules, 2020, 10, 208.	1.8	2
13	Common Data Elements for Subarachnoid Hemorrhage and Unruptured Intracranial Aneurysms: Recommendations from the Working Group on Subject Characteristics. Neurocritical Care, 2019, 30, 20-27.	1.2	12
14	Disturbed flow induces a sustained, stochastic NF-κB activation which may support intracranial aneurysm growth in vivo. Scientific Reports, 2019, 9, 4738.	1.6	25
15	Selective inhibition of Panx1 channels decreases hemostasis and thrombosis in vivo. Thrombosis Research, 2019, 183, 56-62.	0.8	12
16	Sex-related differences in wall remodeling and intraluminal thrombus resolution in a rat saccular aneurysm model. Journal of Neurosurgery, 2019, , 1-14.	0.9	8
17	Plea for an international Aneurysm Data Bank: description and perspectives. Neurosurgical Focus, 2019, 47, E17.	1.0	4
18	Correlating Clinical Risk Factors and Histological Features in Ruptured and Unruptured Human Intracranial Aneurysms: The Swiss AneuX Study. Journal of Neuropathology and Experimental Neurology, 2018, 77, 555-566.	0.9	34

SANDRINE MOREL

#	Article	IF	CITATIONS
19	Role of hemodynamics in initiation/growth of intracranial aneurysms. European Journal of Clinical Investigation, 2018, 48, e12992.	1.7	57
20	Pannexin1 links lymphatic function to lipid metabolism and atherosclerosis. Scientific Reports, 2017, 7, 13706.	1.6	18
21	Role of connexin 43 in different forms of intercellular communication – gap junctions, extracellular vesicles and tunnelling nanotubes. Journal of Cell Science, 2017, 130, 3619-3630.	1.2	119
22	PHASES Score for the Management of Intracranial Aneurysm. Stroke, 2017, 48, 2105-2112.	1.0	118
23	Unruptured intracranial aneurysm follow-up and treatment after morphological change is safe: observational study and systematic review. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1277-1282.	0.9	39
24	Sphingosine-1-phosphate reduces ischaemia–reperfusion injury by phosphorylating the gap junction protein Connexin43. Cardiovascular Research, 2016, 109, 385-396.	1.8	55
25	Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 817-824.	1.1	61
26	Functional role of a polymorphism in the Pannexin1 gene in collageninduced platelet aggregation. Thrombosis and Haemostasis, 2015, 114, 325-336.	1.8	34
27	Titration of the gap junction protein Connexin43 reduces atherogenesis. Thrombosis and Haemostasis, 2014, 112, 390-401.	1.8	19
28	Endothelial Cx40 limits myocardial ischaemia/reperfusion injury in mice. Cardiovascular Research, 2014, 102, 329-337.	1.8	30
29	Multiple Roles of Connexins in Atherosclerosis- and Restenosis-Induced Vascular Remodelling. Journal of Vascular Research, 2014, 51, 149-161.	0.6	27
30	Mutations in cardiovascular connexin genes. Biology of the Cell, 2014, 106, 269-293.	0.7	29
31	Vascular Connexins in Restenosis After Balloon Injury. Methods in Molecular Biology, 2013, 1037, 381-398.	0.4	4
32	The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovascular Research, 2012, 93, 41-49.	1.8	37
33	Roles of Connexins in Atherosclerosis and Ischemia-Reperfusion Injury. Current Pharmaceutical Biotechnology, 2012, 13, 17-26.	0.9	16
34	Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation. Carcinogenesis, 2010, 31, 1922-1931.	1.3	41
35	Connexins participate in the initiation and progression of atherosclerosis. Seminars in Immunopathology, 2009, 31, 49-61.	2.8	29
36	Molecular role of Cx37 in advanced atherosclerosis: A micro-array study. Atherosclerosis, 2009, 206, 69-76.	0.4	24

#	Article	IF	CITATIONS
37	Targeting Connexin 43 Prevents Platelet-Derived Growth Factor-BB–Induced Phenotypic Change in Porcine Coronary Artery Smooth Muscle Cells. Circulation Research, 2008, 102, 653-660.	2.0	56
38	Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function. Basic Research in Cardiology, 2006, 101, 336-345.	2.5	20