Gustavo Cordero-Bueso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7917320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the farming system and vine variety on yeast communities associated with grape berries. International Journal of Food Microbiology, 2011, 145, 132-139.	4.7	133
2	Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). European Food Research and Technology, 2013, 236, 193-207.	3.3	77
3	Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens. Frontiers in Microbiology, 2017, 8, 2025.	3.5	74
4	Genetic diversity in commercial wineries: effects of the farming system and vinification management on wine yeasts. Journal of Applied Microbiology, 2012, 112, 302-315.	3.1	57
5	Novel wine yeast with mutations in <i>YAP1</i> that produce less acetic acid during fermentation. FEMS Yeast Research, 2013, 13, 62-73.	2.3	42
6	Culturable Yeasts as Biofertilizers and Biopesticides for a Sustainable Agriculture: A Comprehensive Review. Plants, 2021, 10, 822.	3.5	39
7	The Role of Yeasts as Biocontrol Agents for Pathogenic Fungi on Postharvest Grapes: A Review. Foods, 2021, 10, 1650.	4.3	33
8	Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiology Ecology, 2011, 77, 429-437.	2.7	30
9	Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. International Journal of Food Microbiology, 2011, 148, 23-29.	4.7	27
10	The Microbial Diversity of Sherry Wines. Fermentation, 2018, 4, 19.	3.0	26
11	A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard. International Journal of Food Microbiology, 2014, 189, 189-194.	4.7	25
12	Improvement of Malvar Wine Quality by Use of Locally-Selected Saccharomyces cerevisiae Strains. Fermentation, 2016, 2, 7.	3.0	22
13	New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae. Frontiers in Microbiology, 2016, 7, 1545.	3.5	21
14	Rethinking about flor yeast diversity and its dynamic in the "criaderas and soleras―biological aging system. Food Microbiology, 2020, 92, 103553.	4.2	16
15	Co-Existence of Inoculated Yeast and Lactic Acid Bacteria and Their Impact on the Aroma Profile and Sensory Traits of Tempranillo Red Wine. Fermentation, 2020, 6, 17.	3.0	10
16	Rapid and not culture-dependent assay based on multiplex PCR-SSR analysis for monitoring inoculated yeast strains in industrial wine fermentations. Archives of Microbiology, 2017, 199, 135-143.	2.2	8
17	A Microtiter Plate Assay as a Reliable Method to Assure the Identification and Classification of the Veil-Forming Yeasts during Sherry Wines Ageing. Fermentation, 2017, 3, 58.	3.0	8
18	Culturable Yeast Diversity of Grape Berries from Vitis vinifera ssp. sylvestris (Gmelin) Hegi. Journal of Fungi (Basel, Switzerland), 2022, 8, 410.	3.5	4

#	Article	IF	CITATIONS
19	Bacteriophages as an Up-and-Coming Alternative to the Use of Sulfur Dioxide in Winemaking. Frontiers in Microbiology, 2019, 10, 2931.	3.5	3
20	Improving an Industrial Sherry Base Wine by Yeast Enhancement Strategies. Foods, 2022, 11, 1104.	4.3	3
21	Isolation of bacteriophages from must and wine for the elimination of contaminating bacteria as an alternative to the use of sulfurous. BIO Web of Conferences, 2019, 15, 02011.	0.2	2
22	Diversidad genética de levaduras aisladas a partir de uvas de Vitis vinifera ssp. Sylvestris (Gmelin) Hegi en el área Euroasiática. BIO Web of Conferences, 2017, 9, 02019.	0.2	1
23	Editorial: Microorganisms for a Sustainable Viticulture and Winemaking. Frontiers in Microbiology, 2018, 9, 2650.	3.5	1
24	The veil of flor's structure, composition and interactions in biological ageing wines. BIO Web of Conferences, 2019, 15, 02018.	0.2	0
25	Microbial Diversity and Safety in Fermented Beverages. Beverages, 2022, 8, 14.	2.8	0