Xunshan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916944/publications.pdf

Version: 2024-02-01

38	865	16	28
papers	citations	h-index	g-index
38	38	38	1398
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution. Angewandte Chemie - International Edition, 2017, 56, 173-176.	7.2	120
2	Bottom-up Synthesis of Nitrogen-Doped Porous Graphene Nanoribbons. Journal of the American Chemical Society, 2020, 142, 12568-12573.	6.6	97
3	Novel D–D–π-A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells. Journal of Power Sources, 2014, 248, 400-406.	4.0	74
4	Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl–Aryl Bond Formation. Journal of the American Chemical Society, 2016, 138, 5585-5593.	6.6	67
5	Robust graphene-based molecular devices. Nature Nanotechnology, 2019, 14, 957-961.	15.6	50
6	Self-Assembled Molecular-Electronic Films Controlled by Room Temperature Quantum Interference. CheM, 2019, 5, 474-484.	5.8	45
7	Design of High-Performance Organic Light-Emitting Transistors. ACS Omega, 2020, 5, 68-74.	1.6	32
8	Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. Journal of the American Chemical Society, 2021, 143, 5239-5246.	6.6	31
9	Donor–Acceptor Properties of a Single-Molecule Altered by On-Surface Complex Formation. ACS Nano, 2017, 11, 8413-8420.	7.3	30
10	Onâ€Surface Synthesis of Nitrogenâ€Doped Kagome Graphene. Angewandte Chemie - International Edition, 2021, 60, 8370-8375.	7.2	26
11	Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution. Angewandte Chemie, 2017, 129, 179-182.	1.6	22
12	Foldable semi-ladder polymers: novel aggregation behavior and high-performance solution-processed organic light-emitting transistors. Chemical Science, 2020, 11, 11315-11321.	3.7	22
13	Synthesis and photovoltaic properties of conjugated side chains polymers with different electronâ€withdrawing and donating end groups. Journal of Polymer Science Part A, 2012, 50, 3848-3858.	2.5	21
14	BODIPY-Containing Polymers with Ultralow Band Gaps and Ambipolar Charge Mobilities. Macromolecules, 2020, 53, 2014-2020.	2.2	18
15	Synthesis and photovoltaic properties of copolymers based on benzo[1,2-b:4,5-b′]dithiophene and thiazole with different conjugated side groups. Polymer Chemistry, 2013, 4, 4737.	1.9	17
16	Probing Lewis acid–base interactions in single-molecule junctions. Nanoscale, 2018, 10, 18131-18134.	2.8	17
17	Highly Emissive Semi-Ladder-Type Copolymers, Aggregation State, and Solution-Processed Organic Light-Emitting Transistor. Chemistry of Materials, 2020, 32, 4672-4680.	3.2	17
18	Crystallization of a Twoâ€Dimensional Hydrogenâ€Bonded Molecular Assembly: Evolution of the Local Structure Resolved by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2017, 56, 10786-10790.	7.2	16

#	Article	IF	CITATIONS
19	Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells. Dyes and Pigments, 2016, 124, 222-231.	2.0	15
20	Stimuli-responsive NLO properties of tetrathiafulvalene-fused donor–acceptor chromophores. Physical Chemistry Chemical Physics, 2017, 19, 22573-22579.	1.3	14
21	Overcoming Steric Hindrance in Arylâ€Aryl Homocoupling via Onâ€6urface Copolymerization. ChemPhysChem, 2019, 20, 2360-2366.	1.0	14
22	Dipole Moment and Polarizability of Tunable Intramolecular Charge Transfer States in Heterocyclic π-Conjugated Molecular Dyads Determined by Computational and Stark Spectroscopic Study. Journal of Physical Chemistry C, 2018, 122, 9346-9355.	1.5	13
23	Sequential Bending and Twisting around C–C Single Bonds by Mechanical Lifting of a Pre-Adsorbed Polymer. Nano Letters, 2020, 20, 652-657.	4.5	12
24	Dirac-cone induced gating enhancement in single-molecule field-effect transistors. Nanoscale, 2019, 11, 13117-13125.	2.8	11
25	Photoinduced cationic polycondensation in solid state towards ultralow band gap conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 7026-7033.	2.7	10
26	Exploiting Cooperative Catalysis for the Onâ€Surface Synthesis of Linear Heteroaromatic Polymers via Selective Câ€"H Activation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
27	Synthesis and photovoltaic properties of organic small molecules containing triphenylamine and benzothiadiazole moieties with different terminal groups. Dyes and Pigments, 2013, 98, 464-470.	2.0	8
28	Low-Dimensional Tin(II) Iodide Perovskite Structures Templated by an Aromatic Heterocyclic Cation. Crystal Growth and Design, 2016, 16, 5230-5237.	1.4	8
29	Synthesis and photovoltaic properties of two new unsymmetrical zinc-phthalocyanine dyes. Synthetic Metals, 2012, 162, 2316-2321.	2.1	6
30	Crystallization of a Twoâ€Dimensional Hydrogenâ€Bonded Molecular Assembly: Evolution of the Local Structure Resolved by Atomic Force Microscopy. Angewandte Chemie, 2017, 129, 10926-10930.	1.6	5
31	Flexible Superlubricity Unveiled in Sidewinding Motion of Individual Polymeric Chains. Physical Review Letters, 2022, 128, .	2.9	5
32	Self-Assembly and Magnetic Order of Bi-Molecular 2D Spin Lattices of M(II,III) Phthalocyanines on Au(111). Magnetochemistry, 2021, 7, 119.	1.0	4
33	Finely Designed P3HT-Based Fully Conjugated Graft Polymer: Optical Measurements, Morphology, and the Faraday Effect. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30856-30861.	4.0	3
34	Exploiting Cooperative Catalysis for the Onâ€surface Synthesis of Linear Heteroaromatic Polymers via Selective Câ€H Activation. Angewandte Chemie, 0, , .	1.6	2
35	Donor–Acceptor Conjugated Copolymers Containing Transition-Metal Complex: Intrachain Magnetic Exchange Interactions and Magneto-Optical Activity. Chemistry of Materials, 0, , .	3 . 2	2
36	Onâ€Surface Synthesis of Nitrogenâ€Doped Kagome Graphene. Angewandte Chemie, 2021, 133, 8451-8456.	1.6	1

3

Xunshan Liu

#	Article	IF	CITATIONS
37	Frontispiz: Onâ€Surface Synthesis of Nitrogenâ€Doped Kagome Graphene. Angewandte Chemie, 2021, 133, .	1.6	0
38	Frontispiece: Onâ€Surface Synthesis of Nitrogenâ€Doped Kagome Graphene. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0