Ashim Kumar Bagchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-10 Mitigates Doxorubicin-Induced Endoplasmic Reticulum Stress as Well as Cardiomyopathy. Biomedicines, 2022, 10, 890.	3.2	6
2	Vitamin C: historical perspectives and heart failure. Heart Failure Reviews, 2021, 26, 699-709.	3.9	9
3	Study of ER stress and apoptotic proteins in the heart and tumor exposed to doxorubicin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119039.	4.1	18
4	Role of oxidative stress versus lipids in monocrotalineâ€induced pulmonary hypertension and right heart failure. Physiological Reports, 2021, 9, e15090.	1.7	5
5	Endoplasmic Reticulum Stress Promotes iNOS/NO and Influences Inflammation in the Development of Doxorubicin-Induced Cardiomyopathy. Antioxidants, 2021, 10, 1897.	5.1	11
6	IL-10 attenuates OxPCs-mediated lipid metabolic responses in ischemia reperfusion injury. Scientific Reports, 2020, 10, 12120.	3.3	17
7	Blueberry extract attenuates doxorubicin-induced damage in H9c2 cardiac cells. Canadian Journal of Physiology and Pharmacology, 2019, 97, 880-884.	1.4	10
8	Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury. Canadian Journal of Physiology and Pharmacology, 2019, 97, 287-292.	1.4	57
9	Innate immune response in the pathogenesis of heart failure in survivors of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H435-H445.	3.2	26
10	OxPCsâ€Mediated Lipid Metabolic Responses in Cardiomyocytes as well as During Ischemia Reperfusion Injury. FASEB Journal, 2019, 33, lb480.	0.5	0
11	Endoplasmic Reticulum Stress Mediated Inflammation may involve in Doxorubicinâ€induced Cardiomyopathy. FASEB Journal, 2018, 32, 718.3.	0.5	0
12	Toll-like receptor 2 dominance over Toll-like receptor 4 in stressful conditions for its detrimental role in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1238-H1247.	3.2	22
13	Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. American Journal of Physiology - Cell Physiology, 2017, 312, C418-C427.	4.6	41
14	Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H795-H809.	3.2	93
15	Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Failure Reviews, 2016, 21, 11-23.	3.9	156
16	Host Receptor Immunomodulation in Response to <i>Shigella</i> Surface Antigens: An Insight for Vaccine Development. American Journal of Immunology, 2015, 11, 33-47.	0.1	0
17	Oleic acid mitigates TNF-α-induced oxidative stress in rat cardiomyocytes. Molecular and Cellular Biochemistry, 2013, 372, 75-82.	3.1	43
18	Interleukin-10 activates Toll-like receptor 4 and requires MyD88 for cardiomyocyte survival. Cytokine, 2013. 61. 304-314.	3.2	22

ASHIM KUMAR BAGCHI

#	Article	IF	CITATIONS
19	Subcellular basis of vitamin C protection against doxorubicin-induced changes in rat cardiomyocytes. Molecular and Cellular Biochemistry, 2012, 360, 215-224.	3.1	32
20	Scaâ€l positive cells are more sensitive than adult rat cardiomyocytes to doxorubicinâ€induced changes. FASEB Journal, 2012, 26, 693.3.	0.5	0
21	288 IL-10 induced cardiomyocyte survival is mediated by CD14 and MyD88 activation. Canadian Journal of Cardiology, 2011, 27, S167.	1.7	0
22	Akt Regulates IL-10 Mediated Suppression of TNFα-Induced Cardiomyocyte Apoptosis by Upregulating Stat3 Phosphorylation. PLoS ONE, 2011, 6, e25009.	2.5	52
23	Selective Deletion of CD8+ Cells Upregulated by Caspases-1 via IL-18 in Mice Immunized with Major Outer Membrane Protein of Shigella dysenteriae 1 Following Infection. Journal of Clinical Immunology, 2010, 30, 408-418.	3.8	3
24	Adaptive immune responses during Shigella dysenteriae type 1 infection: an in vitro stimulation with 57ÅkDa major antigenic OMP in the presence of anti-CD3 antibody. Molecular and Cellular Biochemistry, 2010, 338, 1-10.	3.1	3
25	Role of 57 kDa major antigenic component of Shigella dysenteriae outer membrane proteins in induction of major histocompatibility complex II-restricted T-cell response. Archives of Medical Research, 2004, 35, 427-434.	3.3	7