Thomas L Vaughan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nature Reviews Cancer, 2010, 10, 87-101.	12.8	346
2	Central Adiposity and Risk of Barrett's Esophagus. Gastroenterology, 2007, 133, 403-411.	0.6	276
3	Cigarette Smoking and Adenocarcinomas of the Esophagus and Esophagogastric Junction: A Pooled Analysis From the International BEACON Consortium. Journal of the National Cancer Institute, 2010, 102, 1344-1353.	3.0	259
4	Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. International Journal of Epidemiology, 2012, 41, 1706-1718.	0.9	237
5	NSAIDs Modulate CDKN2A, TP53, and DNA Content Risk for Progression to Esophageal Adenocarcinoma. PLoS Medicine, 2007, 4, e67.	3.9	228
6	Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett's oesophagus: a prospective study. Lancet Oncology, The, 2005, 6, 945-952.	5.1	196
7	A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus. Nature Genetics, 2013, 45, 1487-1493.	9.4	174
8	Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus. Nature Genetics, 2012, 44, 1131-1136.	9.4	162
9	Nonsteroidal Anti-inflammatory Drug Use Reduces Risk of Adenocarcinomas of the Esophagus and Esophagogastric Junction in a Pooled Analysis. Gastroenterology, 2012, 142, 442-452.e5.	0.6	140
10	Gastroesophageal Reflux in Relation to Adenocarcinomas of the Esophagus: A Pooled Analysis from the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON). PLoS ONE, 2014, 9, e103508.	1.1	134
11	Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis. Lancet Oncology, The, 2016, 17, 1363-1373.	5.1	133
12	Obesity and Risk of Esophageal Adenocarcinoma and Barrett's Esophagus: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2014, 106, .	3.0	132
13	Precision prevention of oesophageal adenocarcinoma. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 243-248.	8.2	129
14	Family history of cancer and risk of esophageal and gastric cancers in the United States. International Journal of Cancer, 2001, 93, 148-152.	2.3	127
15	Sex-specific associations between body mass index, waist circumference and the risk of Barrett's oesophagus: a pooled analysis from the international BEACON consortium. Gut, 2013, 62, 1684-1691.	6.1	118
16	Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055.	1.1	107
17	Formaldehyde and cancers of the pharynx, sinus and nasal cavity: I. Occupational exposures. International Journal of Cancer, 1986, 38, 677-683.	2.3	96
18	A caseâ€control study of maternal smoking and congenital malformations. Paediatric and Perinatal Epidemiology, 1990, 4, 147-155.	0.8	87

#	Article	IF	CITATIONS
19	Germline Genetic Contributions to Risk for Esophageal Adenocarcinoma, Barrett's Esophagus, and Gastroesophageal Reflux. Journal of the National Cancer Institute, 2013, 105, 1711-1718.	3.0	85
20	Most common â€~sporadic' cancers have a significant germline genetic component. Human Molecular Genetics, 2014, 23, 6112-6118.	1.4	85
21	Formaldehyde and cancers of the pharynx, sinus and nasal cavity: II. Residential exposures. International Journal of Cancer, 1986, 38, 685-688.	2.3	84
22	The Role of Tobacco, Alcohol, and Obesity in Neoplastic Progression to Esophageal Adenocarcinoma: A Prospective Study of Barrett's Esophagus. PLoS ONE, 2013, 8, e52192.	1.1	80
23	A case-control study of multiple myeloma and occupation. American Journal of Industrial Medicine, 1993, 23, 629-639.	1.0	77
24	Descriptive epidemiology and survival analysis of nasopharyngeal carcinoma in the united states. International Journal of Cancer, 1992, 52, 549-556.	2.3	75
25	Fluid intake and the incidence of bladder cancer among middleâ€aged men and women in a threeâ€county area of western Washington. Nutrition and Cancer, 1997, 29, 163-168.	0.9	75
26	Diet and pharyngeal cancer. International Journal of Cancer, 1989, 44, 593-597.	2.3	74
27	Demographic and lifestyle predictors of survival in patients with esophageal or gastric cancers. Clinical Gastroenterology and Hepatology, 2005, 3, 225-230.	2.4	74
28	The Evolving Genomic Landscape of Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology, 2017, 153, 657-673.e1.	0.6	69
29	Diet and nasopharyngeal cancer in a low-risk population. , 1998, 78, 675-679.		68
30	Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China. American Journal of Epidemiology, 2017, 185, 1272-1280.	1.6	68
31	A Clinical Risk Prediction Model for Barrett Esophagus. Cancer Prevention Research, 2012, 5, 1115-1123.	0.7	67
32	Determining Risk of Barrett's Esophagus and Esophageal Adenocarcinoma Based on Epidemiologic Factors and GeneticÂVariants. Gastroenterology, 2018, 154, 1273-1281.e3.	0.6	67
33	Alcohol drinking and head and neck cancer risk: the joint effect of intensity and duration. British Journal of Cancer, 2020, 123, 1456-1463.	2.9	65
34	Helicobacter pylori Infection Is Associated With Reduced Risk of Barrett's Esophagus: An Analysis of the Barrett's and Esophageal Adenocarcinoma Consortium. American Journal of Gastroenterology, 2018, 113, 1148-1155.	0.2	57
35	Alcohol and the Risk of Barrett's Esophagus: A Pooled Analysis from the International BEACON Consortium. American Journal of Gastroenterology, 2014, 109, 1586-1594.	0.2	55
36	Quantification of familial risk of nasopharyngeal carcinoma in a highâ€incidence area. Cancer, 2017, 123, 2716-2725.	2.0	54

#	Article	IF	CITATIONS
37	Hormonal Factors and Risks of Esophageal Squamous Cell Carcinoma and Adenocarcinoma in Postmenopausal Women. Cancer Prevention Research, 2011, 4, 840-850.	0.7	50
38	Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Annals of Epidemiology, 2014, 24, 50-57.	0.9	50
39	Exposures to wood dust in U.S. industries and occupations, 1979 to 1997. , 1999, 35, 581-589.		48
40	A protective association between the HLA-A2 antigen and nasopharyngeal carcinoma in us caucasians. International Journal of Cancer, 1994, 56, 465-467.	2.3	46
41	Oral Hygiene and Risk of Nasopharyngeal Carcinoma—A Population-Based Case–Control Study in China. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1201-1207.	1.1	46
42	Use of Statin Medications and Risk of Esophageal Adenocarcinoma in Persons with Barrett's Esophagus. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 456-461.	1.1	45
43	Assessment of Esophageal Adenocarcinoma Risk Using Somatic Chromosome Alterations in Longitudinal Samples in Barrett's Esophagus. Cancer Prevention Research, 2015, 8, 845-856.	0.7	44
44	Neurophysiological Function in Farm Workers Exposed to Organophosphate Pesticides. Archives of Environmental Health, 1998, 53, 7-14.	0.4	43
45	A case-control study of oral cancer and pre-diagnostic concentrations of selenium and zinc in nail tissue. International Journal of Cancer, 1991, 48, 182-188.	2.3	41
46	Cancer incidence among alachlor manufacturing workers. , 1996, 30, 300-306.		40
47	Nonsteroidal anti-inflammatory drug use, body mass index, and anthropometry in relation to genetic and flow cytometric abnormalities in Barrett's esophagus. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 745-52.	1.1	40
48	Germline variation in inflammation-related pathways and risk of Barrett's oesophagus and oesophageal adenocarcinoma. Gut, 2017, 66, 1739-1747.	6.1	38
49	Occupation and squamous cell cancers of the pharynx and sinonasal cavity. American Journal of Industrial Medicine, 1989, 16, 493-510.	1.0	36
50	Inflammation and Oxidative Stress Markers and Esophageal Adenocarcinoma Incidence in a Barrett's Esophagus Cohort. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2393-2403.	1.1	35
51	The Role of Gastroesophageal Reflux and Other Factors during Progression to Esophageal Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1012-1023.	1.1	35
52	Joint effects of intensity and duration of cigarette smoking on the risk of head and neck cancer: A bivariate spline model approach. Oral Oncology, 2019, 94, 47-57.	0.8	32
53	Integrative post-genome-wide association analysis of CDKN2A and TP53 SNPs and risk of esophageal adenocarcinoma. Carcinogenesis, 2014, 35, 2740-2747.	1.3	31
54	Age-specific risk factor profiles of adenocarcinomas of the esophagus: A pooled analysis from the international BEACON consortium. International Journal of Cancer, 2016, 138, 55-64.	2.3	31

#	Article	IF	CITATIONS
55	Chronic gastroesophageal reflux disease shares genetic background with esophageal adenocarcinoma and Barrett's esophagus. Human Molecular Genetics, 2016, 25, 828-835.	1.4	31
56	Risk of Esophageal Adenocarcinoma Decreases With Height, Based on Consortium Analysis and Confirmed by Mendelian Randomization. Clinical Gastroenterology and Hepatology, 2014, 12, 1667-1676.e1.	2.4	30
57	Development of a population-based cancer case-control study in southern china. Oncotarget, 2017, 8, 87073-87085.	0.8	29
58	Nonsteroidal Anti-Inflammatory Drug Use is Not Associated With Reduced Risk of Barrett's Esophagus. American Journal of Gastroenterology, 2016, 111, 1528-1535.	0.2	28
59	B cell neoplasms and occupational asbestos exposure. American Journal of Industrial Medicine, 1988, 14, 661-671.	1.0	26
60	Supportive evidence for <i><scp>FOXP</scp>1</i> , <i><scp>BARX</scp>1</i> , and <i><scp>FOXF</scp>1</i> as genetic risk loci for the development of esophageal adenocarcinoma. Cancer Medicine, 2015, 4, 1700-1704.	1.3	26
61	Candidate serum metabolite biomarkers for differentiating gastroesophageal reflux disease, Barrett's esophagus, and high-grade dysplasia/esophageal adenocarcinoma. Metabolomics, 2017, 13, 1.	1.4	26
62	A Newly Identified Susceptibility Locus near <i>FOXP1</i> Modifies the Association of Gastroesophageal Reflux with Barrett's Esophagus. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1739-1747.	1.1	24
63	A pooled analysis of dietary sugar/carbohydrate intake and esophageal and gastric cardia adenocarcinoma incidence and survival in the USA. International Journal of Epidemiology, 2017, 46, 1836-1846.	0.9	23
64	MiRNA-Related SNPs and Risk of Esophageal Adenocarcinoma and Barrett's Esophagus: Post Genome-Wide Association Analysis in the BEACON Consortium. PLoS ONE, 2015, 10, e0128617.	1.1	21
65	External Validation of the Michigan Barrett's Esophagus Prediction Tool. Clinical Gastroenterology and Hepatology, 2017, 15, 1124-1126.	2.4	19
66	Obesity and inflammation markers in relation to leukocyte telomere length in a cross-sectional study of persons with Barrett's esophagus. BMC Obesity, 2015, 2, 32.	3.1	18
67	NSAID use and somatic exomic mutations in Barrett's esophagus. Genome Medicine, 2018, 10, 17.	3.6	16
68	Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett's Esophagus. Clinical Gastroenterology and Hepatology, 2018, 16, 1598-1606.e4.	2.4	16
69	No Association Between Vitamin D Status and Risk of Barrett's Esophagus or Esophageal Adenocarcinoma: A Mendelian Randomization Study. Clinical Gastroenterology and Hepatology, 2019, 17, 2227-2235.e1.	2.4	16
70	Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology, 2020, 159, 2065-2076.e1.	0.6	16
71	Diabetes in relation to Barrett's esophagus and adenocarcinomas of the esophagus: A pooled study from the International Barrett's and Esophageal Adenocarcinoma Consortium. Cancer, 2019, 125, 4210-4223.	2.0	13
72	Inverse Association Between Cluteofemoral Obesity and Risk ofÂBarrett's Esophagus in a Pooled Analysis. Clinical Gastroenterology and Hepatology, 2016, 14, 1412-1419.e3.	2.4	12

#	Article	IF	CITATIONS
73	Association Between Levels of Sex Hormones and Risk of Esophageal Adenocarcinoma and Barrett's Esophagus. Clinical Gastroenterology and Hepatology, 2020, 18, 2701-2709.e3.	2.4	12
74	Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis, 2021, 42, 369-377.	1.3	11
75	Polymorphisms in genes in the androgen pathway and risk of Barrett's esophagus and esophageal adenocarcinoma. International Journal of Cancer, 2016, 138, 1146-1152.	2.3	10
76	Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett's Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium. PLoS ONE, 2015, 10, e0138738.	1.1	9
77	Evidence against a role for jaagsiekte sheep retrovirus in human lung cancer. Retrovirology, 2017, 14, 3.	0.9	9
78	From genomics to diagnostics of esophageal adenocarcinoma. Nature Genetics, 2014, 46, 806-807.	9.4	8
79	Pleiotropic Analysis of Cancer Risk Loci on Esophageal Adenocarcinoma Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1801-1803.	1.1	7
80	Constrained Score Statistics Identify Genetic Variants Interacting with Multiple Risk Factors in Barrett's Esophagus. American Journal of Human Genetics, 2016, 99, 352-365.	2.6	7
81	Shared Genetic Etiology of Obesity-Related Traits and Barrett's Esophagus/Adenocarcinoma: Insights from Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 427-433.	1.1	7
82	Dietary flavonoid intake and Barrett's esophagus in western Washington State. Annals of Epidemiology, 2015, 25, 730-735.e2.	0.9	6
83	Leukocyte telomere length in relation to the risk of Barrett's esophagus and esophageal adenocarcinoma. Cancer Medicine, 2016, 5, 2657-2665.	1.3	6
84	Whole-genome sequencing of esophageal adenocarcinoma in Chinese patients reveals distinct mutational signatures and genomic alterations. Communications Biology, 2018, 1, 174.	2.0	6
85	Lorenz Curves and Gini Coefficient Analyses Indicate Inefficiencies in Esophageal Adenocarcinoma Screening. Clinical Gastroenterology and Hepatology, 2019, 17, 560-562.e2.	2.4	5
86	Interactive decision support for esophageal adenocarcinoma screening and surveillance. BMC Gastroenterology, 2019, 19, 109.	0.8	4
87	The impact of low-fat and full-fat dairy foods on symptoms of gastroesophageal reflux disease: an exploratory analysis based on a randomized controlled trial. European Journal of Nutrition, 2022, 61, 2815-2823.	1.8	4
88	Circulating MicroRNAs in Relation to Esophageal Adenocarcinoma Diagnosis and Survival. Digestive Diseases and Sciences, 2021, 66, 3831-3841.	1.1	3
89	Modeling historic incidence trends implies early field cancerization in esophageal squamous cell carcinoma. PLoS Computational Biology, 2021, 17, e1008961.	1.5	2
90	eQTL set-based association analysis identifies novel susceptibility loci for Barrett's esophagus and esophageal adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 0, , .	1.1	1

#	Article	IF	CITATIONS
91	A risk variant for Barrett's esophagus and esophageal adenocarcinoma at chr8p23.1 affects enhancer activity and implicates multiple gene targets. Human Molecular Genetics, 2022, 31, 3975-3986.	1.4	1
92	Gastrointestinal Cancers. , 2006, , 239-252.		0
93	Genomic determinants of prognosis in esophageal adenocarcinoma: Using computational methods to account for gene-gene interactions Journal of Clinical Oncology, 2014, 32, 42-42.	0.8	0
94	A multinational assessment of gastric and esophageal cancer burden by age, gender, and disease characteristics Journal of Clinical Oncology, 2015, 33, 29-29.	0.8	0