Serge Bourbigot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916433/publications.pdf Version: 2024-02-01

		9234	19136
317	18,426	74	118
papers	citations	h-index	g-index
276	376	276	8800
520	520	520	0000
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Advances for Intumescent Polymers. Macromolecular Materials and Engineering, 2004, 289, 499-511.	1.7	642
2	Fire retardant polymers: recent developments and opportunities. Journal of Materials Chemistry, 2007, 17, 2283.	6.7	558
3	Intumescence: Tradition versus novelty. A comprehensive review. Progress in Polymer Science, 2015, 51, 28-73.	11.8	410
4	PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire and Materials, 2000, 24, 201-208.	0.9	315
5	Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies, 2008, 19, 628-635.	1.6	290
6	Intumescent fire protective coating: Toward a better understanding of their mechanism of action. Thermochimica Acta, 2006, 449, 16-26.	1.2	275
7	Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon, 1995, 33, 283-294.	5.4	254
8	Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry, 2020, 22, 2129-2161.	4.6	249
9	Flame retardancy of polylactide: an overview. Polymer Chemistry, 2010, 1, 1413.	1.9	247
10	The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability, 2010, 95, 889-900.	2.7	244
11	Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polymer Degradation and Stability, 2003, 82, 325-331.	2.7	216
12	Preparation of Homogeneously Dispersed Multiwalled Carbon Nanotube/Polystyrene Nanocomposites via Melt Extrusion Using Trialkyl Imidazolium Compatibilizer. Advanced Functional Materials, 2005, 15, 910-916.	7.8	209
13	Characterization of the performance of an intumescent fire protective coating. Surface and Coatings Technology, 2006, 201, 979-987.	2.2	200
14	Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite. Polymer Degradation and Stability, 2004, 84, 483-492.	2.7	196
15	Recent advances in the use of zinc borates in flame retardancy of EVA. Polymer Degradation and Stability, 1999, 64, 419-425.	2.7	190
16	The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 2009, 84, 1-17.	2.6	185
17	The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polymer International, 1999, 48, 264-270.	1.6	183
18	Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polymer Degradation and Stability, 2002, 75, 397-402.	2.7	174

#	Article	IF	CITATIONS
19	Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polymer Degradation and Stability, 2001, 74, 493-499.	2.7	170
20	Starch-Based Layer by Layer Assembly: Efficient and Sustainable Approach to Cotton Fire Protection. ACS Applied Materials & Interfaces, 2015, 7, 12158-12167.	4.0	170
21	Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon, 1993, 31, 1219-1230.	5.4	169
22	Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. Journal of Applied Polymer Science, 2001, 82, 3262-3274.	1.3	166
23	Synergistic effect of zeolite in an intumescence process: study of the carbonaceous structures using solid-state NMR. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 149.	1.7	163
24	XPS study of an intumescent coating. Applied Surface Science, 1997, 120, 15-29.	3.1	163
25	Expandable graphite: A fire retardant additive for polyurethane coatings. Fire and Materials, 2003, 27, 103-117.	0.9	163
26	Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polymer Degradation and Stability, 2009, 94, 1230-1237.	2.7	161
27	Kinetic analysis of the thermal decomposition of cellulose: The main step of mass loss. Journal of Analytical and Applied Pyrolysis, 2007, 80, 151-165.	2.6	159
28	Charring of fire retarded ethylene vinyl acetate copolymer— magnesium hydroxide/zinc borate formulations. Polymer Degradation and Stability, 2000, 69, 83-92.	2.7	157
29	New Intumescent Formulations of Fire-retardant Polypropylene—Discussion of the Free Radical Mechanism of the Formation of Carbonaceous Protective Material During the Thermo-oxidative Treatment of the Additives. Fire and Materials, 1996, 20, 191-203.	0.9	153
30	New trends in polylactide (PLA)-based materials: "Green―PLA–Calcium sulfate (nano)composites tailored with flame retardant properties. Polymer Degradation and Stability, 2010, 95, 374-381.	2.7	153
31	Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polymer International, 2000, 49, 1115-1124.	1.6	146
32	Synergistic effect of zeolite in an intumescence process. Study of the interactions between the polymer and the additives. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3435-3444.	1.7	142
33	Polymer Nanocomposites: How to Reach Low Flammability?. Macromolecular Symposia, 2006, 233, 180-190.	0.4	140
34	XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system. Applied Surface Science, 1994, 81, 299-307.	3.1	139
35	Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochimica Acta, 2007, 456, 134-144.	1.2	139
36	The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate). Polymer Degradation and Stability, 2008, 93, 818-826.	2.7	130

#	Article	IF	CITATIONS
37	Comprehensive study of the degradation of an intumescent EVA-based material during combustion. Journal of Materials Science, 1999, 34, 5777-5782.	1.7	129
38	Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polymer Degradation and Stability, 2005, 88, 106-113.	2.7	126
39	Investigation of nanodispersion in polystyrene-montmorillonite nanocomposites by solid-state NMR. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3188-3213.	2.4	122
40	Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 2010, 506, 82-93.	1.2	118
41	Polyallylamine–montmorillonite as super flame retardant coating assemblies byÂlayer-by layer deposition on polyamide. Polymer Degradation and Stability, 2013, 98, 627-634.	2.7	118
42	Preparation of a Novel Intumescent Flame Retardant Based on Supramolecular Interactions and Its Application in Polyamide 11. ACS Applied Materials & amp; Interfaces, 2017, 9, 24964-24975.	4.0	117
43	Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chemical Engineering Journal, 2009, 155, 457-465.	6.6	116
44	Microencapsulation of ammonium phosphate with a polyurethane shell part I: Coacervation technique. Reactive and Functional Polymers, 2005, 64, 127-138.	2.0	115
45	Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. Reactive and Functional Polymers, 2006, 66, 1118-1125.	2.0	113
46	Crystallization behavior of PA-6 clay nanocomposite hybrid. Journal of Applied Polymer Science, 2002, 86, 2416-2423.	1.3	111
47	Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: Structure and properties. Polymer, 2011, 52, 4284-4295.	1.8	111
48	Structure and Properties of PHA/Clay Nanoâ€Biocomposites Prepared by Melt Intercalation. Macromolecular Chemistry and Physics, 2008, 209, 1473-1484.	1.1	110
49	Multiscale Experimental Approach for Developing High-Performance Intumescent Coatings. Industrial & Engineering Chemistry Research, 2006, 45, 4500-4508.	1.8	108
50	Characterization and Reaction to Fire of Polymer Nanocomposites with and without Conventional Flame Retardants. Molecular Crystals and Liquid Crystals, 2008, 486, 325/[1367]-339/[1381].	0.4	108
51	The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides. Journal of Materials Science, 2017, 52, 12235-12250.	1.7	108
52	A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polymer Degradation and Stability, 2013, 98, 2268-2281.	2.7	106
53	Fire Degradation of an Intumescent Flame Retardant Polypropylene Using the Cone Calorimeter. Journal of Fire Sciences, 1995, 13, 3-22.	0.9	105
54	Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polymer Degradation and Stability, 2015, 113, 110-118.	2.7	105

#	Article	IF	CITATIONS
55	Microencapsulation of phosphate. Polymer Degradation and Stability, 2002, 77, 285-297.	2.7	103
56	Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polymers for Advanced Technologies, 2011, 22, 30-37.	1.6	103
57	Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. Journal of Analytical and Applied Pyrolysis, 2017, 123, 65-72.	2.6	102
58	Kinetic modelling of the thermal degradation. European Polymer Journal, 2000, 36, 273-284.	2.6	98
59	Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polymer Degradation and Stability, 2010, 95, 320-326.	2.7	98
60	Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polymer Degradation and Stability, 2016, 127, 32-43.	2.7	97
61	Solid state NMR characterization and flammability of styrene–acrylonitrile copolymer montmorillonite nanocomposite. Polymer, 2004, 45, 7627-7638.	1.8	96
62	Thermal decomposition of flame retarded formulations PA6/aluminum phosphinate/melamine polyphosphate/organomodified clay: Interactions between the constituents?. Polymer Degradation and Stability, 2012, 97, 2217-2230.	2.7	96
63	(Plasticized) Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. Journal of Materials Science, 2007, 42, 5105-5117.	1.7	95
64	Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in PP and synergy with zinc borate. Polymer Degradation and Stability, 2008, 93, 68-76.	2.7	94
65	Thermal oxidative degradation of epoxy resins: evaluation of their heat resistance using invariant kinetic parameters. Polymer Degradation and Stability, 1994, 45, 387-397.	2.7	92
66	Intumescent flame retardant systems of modified rheology. Polymer Degradation and Stability, 2002, 77, 243-247.	2.7	85
67	Effect of Nanoclay Hydration on Barrier Properties of PLA/Montmorillonite Based Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 12117-12135.	1.5	85
68	Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. Journal of Analytical and Applied Pyrolysis, 2017, 126, 14-21.	2.6	84
69	Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology?. Polymer Degradation and Stability, 2008, 93, 2019-2024.	2.7	83
70	Thermal degradation of DNA-treated cotton fabrics under different heating conditions. Journal of Analytical and Applied Pyrolysis, 2014, 108, 212-221.	2.6	82
71	Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam. ACS Applied Materials & Interfaces, 2018, 10, 31686-31696.	4.0	81
72	Zeolites: New Synergistic Agents for Intumescent Fire Retardant Thermoplastic Formulations?Criteria for the Choice of the Zeolite. Fire and Materials, 1996, 20, 145-154.	0.9	79

#	Article	IF	CITATIONS
73	Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Safety Journal, 2009, 44, 504-513.	1.4	79
74	The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105485.	3.8	79
75	Intumescent polylactide: A nonflammable material. Journal of Applied Polymer Science, 2009, 113, 3860-3865.	1.3	78
76	Designing polylactide/clay nanocomposites for textile applications: Effect of processing conditions, spinning, and characterization. Journal of Applied Polymer Science, 2008, 109, 841-851.	1.3	74
77	Melamine integrated metal phosphates as non-halogenated flame retardants: Synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polymer Degradation and Stability, 2013, 98, 2653-2662.	2.7	74
78	Using polyamide-6 as charring agent in intumescent polypropylene formulationsl. Effect of the compatibilising agent on the fire retardancy performance. Polymer Degradation and Stability, 2002, 77, 305-313.	2.7	73
79	Modeling of Heat Transfer of a Polypropylene-Based Intumescent System during Combustion. Journal of Fire Sciences, 1999, 17, 42-56.	0.9	72
80	Modelling of nonisothermal kinetics in thermogravimetry. Physical Chemistry Chemical Physics, 2000, 2, 4708-4716.	1.3	72
81	Study of the thermal degradation of high performance fibres—application to polybenzazole and p-aramid fibres. Polymer Degradation and Stability, 2001, 74, 283-290.	2.7	71
82	Using polyamide 6 as charring agent in intumescent polypropylene formulations II. Thermal degradation. Polymer Degradation and Stability, 2002, 77, 315-323.	2.7	69
83	Characterisation of the dispersion in polymer flame retarded nanocomposites. European Polymer Journal, 2008, 44, 1631-1641.	2.6	68
84	Effect of fillers on fire retardancy of intumescent polypropylene blends. Macromolecular Symposia, 2003, 198, 435-448.	0.4	65
85	Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chemical Engineering Science, 2006, 61, 1276-1292.	1.9	65
86	Flame retardant formulations for cotton. Polymer Degradation and Stability, 2001, 74, 487-492.	2.7	64
87	Comprehensive Study of the Influence of Different Aging Scenarios on the Fire Protective Behavior of an Epoxy Based Intumescent Coating. Industrial & Engineering Chemistry Research, 2013, 52, 729-743.	1.8	62
88	Effect of Highly Exfoliated and Oriented Organoclays on the Barrier Properties of Polyamide 6 Based Nanocomposites. Journal of Physical Chemistry C, 2012, 116, 4937-4947.	1.5	61
89	Reaction to fire of an intumescent epoxy resin: Protection mechanisms and synergy. Polymer Degradation and Stability, 2012, 97, 1366-1386.	2.7	60
90	Rheological investigations in fire retardancy: application to ethylene-vinyl-acetate copolymer-magnesium hydroxide/zinc borate formulations. Polymer International, 2000, 49, 1216-1221.	1.6	58

#	Article	IF	CITATIONS
91	The Use of Clay in an EVA-Based Intumescent Formulation. Comparison with the Intumescent Formulation Using Polyamide-6 Clay Nanocomposite As Carbonisation Agent. Journal of Fire Sciences, 2001, 19, 219-241.	0.9	58
92	Kinetic analysis of the thermal decomposition of cellulose: The change of the rate limitation. Journal of Analytical and Applied Pyrolysis, 2007, 80, 141-150.	2.6	58
93	Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Advances, 2014, 4, 57553-57563.	1.7	58
94	Mineral Fillers in Intumescent Fire Retardant Formulations ? Criteria for the Choice of a Natural Clay Filler for the Ammonium Polyphosphate/Pentaerythritol/Polypropylene System. Fire and Materials, 1996, 20, 39-49.	0.9	56
95	Thermal degradation and fire performance of intumescent siliconeâ€based coatings. Polymers for Advanced Technologies, 2013, 24, 62-69.	1.6	56
96	Intumescent coating of (polyallylamine-polyphosphates) deposited on polyamide fabrics via layer-by-layer technique. Polymer Degradation and Stability, 2014, 106, 158-164.	2.7	56
97	Flammability and thermal properties of polycarbonate /acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polymer Degradation and Stability, 2015, 120, 88-97.	2.7	56
98	Analysis of Fire Gases Released from Polyurethane and Fire-Retarded Polyurethane Coatings. Journal of Fire Sciences, 2000, 18, 456-482.	0.9	55
99	Thermal degradation of poly(p-phenylenebenzobisoxazole) and poly(p-phenylenediamine) Tj ETQq1 1 0.784314	∙ rgBT /Ove 1.6	erlo <u>ck</u> 10 Tf 50
100	Characterization of the carbonization process of expandable graphite/silicone formulations in a simulated fire. Polymer Degradation and Stability, 2013, 98, 1052-1063.	2.7	54
101	Microstructure and barrier properties of PHBV/organoclays bionanocomposites. Journal of Membrane Science, 2014, 467, 56-66.	4.1	54
102	Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polymer Degradation and Stability, 2019, 165, 68-79.	2.7	54
103	Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polymer Degradation and Stability, 2013, 98, 1993-2004.	2.7	53
104	Fire behaviour of carbon fibre epoxy composite for aircraft: Novel test bench and experimental study. Journal of Fire Sciences, 2015, 33, 247-266.	0.9	53
105	The Preparation of an Intumescent Flame Retardant by Ion Exchange and Its Application in Polylactic Acid. ACS Applied Polymer Materials, 2019, 1, 755-764.	2.0	53
106	Characterization of a polyamide-6-based intumescent additive for thermoplastic formulations. Polymer, 2000, 41, 5283-5296.	1.8	52
107	High-Throughput Fire Testing for Intumescent Coatings. Industrial & Engineering Chemistry Research, 2006, 45, 7475-7481.	1.8	52
108	Experimental and numerical study of the effects of nanoparticles on pyrolysis of a polyamide 6 (PA6) nanocomposite in the cone calorimeter. Combustion and Flame, 2009, 156, 2056-2062.	2.8	52

#	Article	IF	CITATIONS
109	Phosphorylation of lignin: characterization and investigation of the thermal decomposition. RSC Advances, 2017, 7, 16866-16877.	1.7	52
110	New Trends in Reaction and Resistance to Fire of Fire-retardant Epoxies. Materials, 2010, 3, 4476-4499.	1.3	51
111	Title is missing!. Journal of Materials Science, 2003, 38, 4451-4460.	1.7	50
112	Processing and nanodispersion: A quantitative approach for polylactide nanocomposite. Polymer Testing, 2008, 27, 2-10.	2.3	50
113	Crossed characterisation of polymer-layered silicate (PLS) nanocomposite morphology: TEM, X-ray diffraction, rheology and solid-state nuclear magnetic resonance measurements. European Polymer Journal, 2008, 44, 1642-1653.	2.6	50
114	Layer-by-layer deposition of a TiO2-filled intumescent coating and its effect on the flame retardancy of polyamide and polyester fabrics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 1-10.	2.3	50
115	Thermal Degradation and Fire Behavior of High Performance Polymers. Polymer Reviews, 2019, 59, 55-123.	5.3	50
116	Influence of the solvent on the microencapsulation of an hydrated salt. Carbohydrate Polymers, 2010, 79, 964-974.	5.1	49
117	Progress in safety, flame retardant textiles and flexible fire barriers for seats in transportation. Polymer Degradation and Stability, 2005, 88, 98-105.	2.7	48
118	Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating. Polymer Degradation and Stability, 2009, 94, 404-409.	2.7	48
119	Influence of talc on the fire retardant properties of highly filled intumescent polypropylene composites. Polymers for Advanced Technologies, 2008, 19, 620-627.	1.6	46
120	Synergistic and antagonistic effects in flame retardancy of an intumescent epoxy resin. Polymers for Advanced Technologies, 2011, 22, 1085-1090.	1.6	45
121	Investigation of the decomposition pathway of polyamide 6/ammonium sulfamate fibers. Polymer Degradation and Stability, 2014, 106, 150-157.	2.7	45
122	Thermal degradation and fire performance of polysilazane-based coatings. Thermochimica Acta, 2011, 519, 28-37.	1.2	43
123	The combination of aluminum trihydroxide (ATH) and melamine borate (MB) as fire retardant additives for elastomeric ethylene vinyl acetate (EVA). Polymer Degradation and Stability, 2015, 115, 77-88.	2.7	43
124	Thermoplastic Polyurethanes as Carbonization Agents in Intumescent Blends. Part 1: Fire Retardancy of Polypropylene/Thermoplastic Polyurethane/Ammonium Polyphosphate Blends. Journal of Fire Sciences, 1999, 17, 494-513.	0.9	42
125	New approach to flame retardancy using plasma assisted surface polymerisation techniques. Polymer Degradation and Stability, 1999, 66, 153-155.	2.7	42
126	Novel flame retardant flexible polyurethane foam: plasma induced graft-polymerization of phosphonates. RSC Advances, 2015, 5, 63853-63865.	1.7	42

#	Article	IF	CITATIONS
127	Crossing the Traditional Boundaries: Salen-Based Schiff Bases for Thermal Protective Applications. ACS Applied Materials & Interfaces, 2015, 7, 21208-21217.	4.0	42
128	Mechanical and Optical Properties of Polyamide 6/Clay Nanocomposite Cast Films: Influence of the Degree of Exfoliation. Macromolecular Materials and Engineering, 2012, 297, 444-454.	1.7	41
129	Resistance to fire of intumescent silicone based coating: The role of organoclay. Progress in Organic Coatings, 2013, 76, 1633-1641.	1.9	41
130	Mechanically robust and flame-retardant polylactide composites based on molecularly-engineered polyphosphoramides. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106317.	3.8	41
131	Heat Transfer Study of Polypropylene-Based Intumescent Systems during Combustion. Journal of Fire Sciences, 1997, 15, 358-374.	0.9	40
132	Combustion behaviour of ethylene vinyl acetate copolymer-based intumescent formulations using oxygen consumption calorimetry. Fire and Materials, 1998, 22, 119-128.	0.9	40
133	Influence of modified rheology on the efficiency of intumescent flame retardant systems. Polymer Degradation and Stability, 2001, 74, 423-426.	2.7	40
134	Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends—ldentification of the formed species. Thermochimica Acta, 2009, 495, 155-166.	1.2	40
135	Chitosan-grafted nonwoven geotextile for heavy metals sorption in sediments. Reactive and Functional Polymers, 2013, 73, 53-59.	2.0	39
136	Influence of inorganic fillers on the fire protection of intumescent coatings. Journal of Fire Sciences, 2013, 31, 258-275.	0.9	39
137	New approach to the dynamic properties of an intumescent material. Fire and Materials, 1999, 23, 49-51.	0.9	38
138	Flame Behavior of Cotton Coated with Polyurethane Containing Microencapsulated Flame Retardant Agent. Journal of Industrial Textiles, 2001, 31, 11-26.	1.1	38
139	Mechanism of intumescence of a polyethylene/calcium carbonate/stearic acid system. Polymer Degradation and Stability, 2009, 94, 797-803.	2.7	38
140	Polypropylene fabrics padded with microencapsulated ammonium phosphate: Effect of the shell structure on the thermal stability and fire performance. Polymer Degradation and Stability, 2010, 95, 1716-1720.	2.7	38
141	Improving the flame retardancy of polyamide 6 by incorporating hexachlorocyclotriphosphazene modified MWNT. Polymers for Advanced Technologies, 2014, 25, 1099-1107.	1.6	38
142	Flame Retardancy of PA6 Using a Guanidine Sulfamate/Melamine Polyphosphate Mixture. Polymers, 2015, 7, 316-332.	2.0	38
143	Synthesis of isosorbide based flame retardants: Application for polybutylene succinate. Polymer Degradation and Stability, 2019, 164, 9-17.	2.7	38
144	Fire behaviour related to the thermal degradation of unsaturated polyesters. Polymer Degradation and Stability, 1999, 64, 443-448.	2.7	37

#	Article	IF	CITATIONS
145	Thermal behaviour of cotton-modacrylic fibre blends: kinetic study using the invariant kinetic parameters method. Thermochimica Acta, 1996, 275, 37-49.	1.2	36
146	Thermal degradation of cotton under linear heating. Polymer Degradation and Stability, 2002, 78, 57-62.	2.7	36
147	Characterisation of poly(p-phenylenebenzobisoxazole) fibres by solid state NMR. European Polymer Journal, 2002, 38, 1645-1651.	2.6	36
148	Towards scalable production of polyamide 12/halloysite nanocomposites via water-assisted extrusion: mechanical modeling, thermal and fire properties. Polymers for Advanced Technologies, 2014, 25, 137-151.	1.6	36
149	Salen based Schiff bases to flame retard thermoplastic polyurethane mimicking operational strategies of thermosetting resin. RSC Advances, 2015, 5, 48224-48235.	1.7	36
150	Development and characterisation of flame-retardant fibres from isotactic polypropylene melt-compounded with melamine-formaldehyde microcapsules. Polymer Degradation and Stability, 2011, 96, 131-143.	2.7	35
151	Investigation of the synergy in intumescent polyurethane byÂ3DÂcomputed tomography. Polymer Degradation and Stability, 2013, 98, 1638-1647.	2.7	35
152	Flammability and thermal degradation of poly (lactic acid)/polycarbonate alloys containing a phosphazene derivative and trisilanollsobutyl POSS. Polymer, 2015, 79, 221-231.	1.8	35
153	Intumescent ethylene-vinyl acetate copolymer: Reaction to fire and mechanistic aspects. Polymer Degradation and Stability, 2019, 161, 235-244.	2.7	35
154	Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn. Polymer Degradation and Stability, 2009, 94, 955-964.	2.7	34
155	Outlining the mechanism of flame retardancy in polyamide 66 blended with melamine-poly(zinc) Tj ETQq1 1 0.7	84314 rgB 1.4	T /Qyerlock 1
156	Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polymer Degradation and Stability, 2012, 97, 1745-1754.	2.7	33
157	Thermal Stability and Fire Properties of Salen and Metallosalens as Fire Retardants in Thermoplastic Polyurethane (TPU). Materials, 2017, 10, 665.	1.3	33
158	Salen Complexes as Fire Protective Agents for Thermoplastic Polyurethane: Deep Electron Paramagnetic Resonance Spectroscopy Investigation. ACS Applied Materials & Interfaces, 2018, 10, 24860-24875.	4.0	33
159	Study of the thermal degradation of an aluminium phosphinate–aluminium trihydrate combination. Thermochimica Acta, 2013, 551, 175-183.	1.2	32
160	An effective flame retardant containing hypophosphorous acid for poly (lactic acid): Fire performance, thermal stability and mechanical properties. Polymer Testing, 2019, 78, 105940.	2.3	32
161	Heat and fire resistance of polyurethane-polydimethylsiloxane hybrid material. Polymers for Advanced Technologies, 2006, 17, 304-311.	1.6	31
162	The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites. Materials, 2015, 8, 5216-5237.	1.3	31

#	Article	IF	CITATIONS
163	Latest progresses in the preparation of tannin-based cellular solids. Journal of Cellular Plastics, 2015, 51, 89-102.	1.2	31
164	Modulated thermogravimetry in analysis of decomposition kinetics. Chemical Engineering Science, 2005, 60, 747-766.	1.9	30
165	Polymer nanoparticles to decrease thermal conductivity of phase change materials. Thermochimica Acta, 2008, 477, 25-31.	1.2	30
166	Morphology and properties of SANâ€clay nanocomposites prepared principally by waterâ€assisted extrusion. Polymer Engineering and Science, 2010, 50, 10-21.	1.5	30
167	Bulk vs. surface flame retardancy of fully bio-based polyamide 10,10. RSC Advances, 2015, 5, 39424-39432.	1.7	30
168	Decomposition mechanism of fire retarded ethylene vinyl acetate elastomer (EVA) containing aluminum trihydroxide and melamine. Polymer Degradation and Stability, 2015, 113, 168-179.	2.7	30
169	Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part l—Characterisation of Thermophysical Properties. Materials, 2017, 10, 494.	1.3	30
170	Hexagonal Boron Nitride Platelet-Based Nanocoating for Fire Protection. ACS Applied Nano Materials, 2019, 2, 5450-5459.	2.4	30
171	Pyrolysis modeling, sensitivity analysis, and optimization techniques for combustible materials: A review. Journal of Fire Sciences, 2019, 37, 377-433.	0.9	30
172	Thin coatings for fire protection: An overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Progress in Organic Coatings, 2021, 154, 106217.	1.9	29
173	Flame retardancy of microcellular poly(lactic acid) foams prepared by supercritical CO2-assisted extrusion. Polymer Degradation and Stability, 2018, 153, 100-108.	2.7	28
174	Cone calorimeter study of high performance fibres—application to polybenzazole and p-aramid fibres. Polymer Degradation and Stability, 2001, 74, 481-486.	2.7	27
175	Supercritical CO2 as an efficient medium for layered silicate organomodification: Preparation of thermally stable organoclays and dispersion in polyamide 6. Polymer, 2009, 50, 1438-1446.	1.8	27
176	New routes to flame retard polyamide 6,6 for electrical applications. Journal of Fire Sciences, 2012, 30, 535-551.	0.9	27
177	Flame retardancy and degradation mechanism of poly(vinyl acetate) in combination with intumescent flame retardants: I. Ammonium poly(phosphate). Polymer Degradation and Stability, 2015, 121, 321-330.	2.7	27
178	Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid. Molecules, 2019, 24, 4123.	1.7	27
179	Optimization of monoguanidine dihydrogen phosphate and amino propylethoxysilane based flame retardant formulations for cotton. Polymer Degradation and Stability, 2006, 91, 1909-1914.	2.7	26
180	PLA nanocomposites: quantification of clay nanodispersion and reaction to fire. International Journal of Nanotechnology, 2008, 5, 683.	0.1	26

#	Article	IF	CITATIONS
181	Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polymer Degradation and Stability, 2010, 95, 315-319.	2.7	26
182	Fire protection of polypropylene and polycarbonate by intumescent coatings. Polymers for Advanced Technologies, 2012, 23, 130-135.	1.6	26
183	Continuous cyclo-polymerisation of <scp>l</scp> -lactide by reactive extrusion using atoxic metal-based catalysts: easy access to well-defined polylactide macrocycles. RSC Advances, 2015, 5, 31303-31310.	1.7	26
184	Calculation of activation energies using the sinusoidally modulated temperature. Magyar Apróvad Közlemények, 2002, 70, 565-579.	1.4	25
185	Flame retardancy of bio-based polyether-block-amide polymer (PEBAX). Polymer Degradation and Stability, 2013, 98, 1247-1255.	2.7	25
186	Instrumentation of ULâ€94 test: understanding of mechanisms involved in fire retardancy of polymers. Polymers for Advanced Technologies, 2015, 26, 865-873.	1.6	25
187	How much the fabric grammage may affect cotton combustion?. Cellulose, 2015, 22, 3477-3489.	2.4	25
188	A theoretical model for quantifying expansion of intumescent coating under different heating conditions. Polymer Engineering and Science, 2016, 56, 798-809.	1.5	25
189	Advanced functional materials based on bamboo cellulose fibers with different crystal structures. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106758.	3.8	25
190	The Degradation Front Model- A Tool for the Chemical Study of the Degradation of Epoxy Resins in Fire. Journal of Fire Sciences, 1996, 14, 199-234.	0.9	24
191	Interactions between chlorinated paraffins and melamine in intumescent paint—investing a way to suppress chlorinated paraffins from the formulations. Progress in Organic Coatings, 2006, 57, 430-438.	1.9	24
192	Development of a precipitation method intended for the entrapment of hydrated salt. Carbohydrate Polymers, 2008, 73, 231-240.	5.1	24
193	Effects of melamine polyphosphate and halloysite nanotubes on the flammability and thermal behavior of polyamide 6. Polymers for Advanced Technologies, 2014, 25, 1552-1559.	1.6	24
194	Resistance to fire of silicone-based coatings: Fire protection of steel against cellulosic fire. Journal of Fire Sciences, 2014, 32, 374-387.	0.9	24
195	Characterization of a plasma polymer coating from an organophosphorus silane deposited at at atmospheric pressure for fire-retardant purposes. Progress in Organic Coatings, 2015, 88, 39-47.	1.9	24
196	Thermoplastic matrixâ€based composites produced by resin transfer molding: A review. Polymer Composites, 2022, 43, 2485-2506.	2.3	24
197	Thermogravimetric analysis of multistage decomposition of materials. Physical Chemistry Chemical Physics, 2000, 2, 4796-4803.	1.3	23
198	Structure and morphology of an intumescent polypropylene blend. Journal of Applied Polymer Science, 2004, 93, 402-411.	1.3	23

#	Article	IF	CITATIONS
199	Intumescent polypropylene: Reaction to fire and mechanistic aspects. Fire Safety Journal, 2019, 105, 261-269.	1.4	23
200	Advances and challenges in eco-benign fire-retardant polylactide. Materials Today Physics, 2021, 21, 100568.	2.9	23
201	Improvement of Flame Retardancy and Antidripping Properties of Intumescent Polybutylene Succinate Combining Piperazine Pyrophosphate and Zinc Borate. ACS Applied Polymer Materials, 2022, 4, 1911-1921.	2.0	23
202	Kinetic analysis of pyrolysis of cross-linked polymers. Polymer Degradation and Stability, 2005, 88, 85-91.	2.7	22
203	Flame retardancy of textiles: new approaches. , 2008, , 9-40.		22
204	Resistance to fire of curable silicone/expandable graphite based coating: Effect of the catalyst. European Polymer Journal, 2013, 49, 2031-2041.	2.6	22
205	Measurement and investigation of intumescent char strength: Application to polyurethanes. Journal of Fire Sciences, 2013, 31, 293-308.	0.9	22
206	Mechanistic investigation of a flame retardant coating made by layer-by-layer assembly. RSC Advances, 2014, 4, 43326-43334.	1.7	22
207	Hydrocarbon time–temperature curve under airjet perturbation: An in situ method to probe char stability and integrity in reactive fire protection coatings. Journal of Fire Sciences, 2016, 34, 385-397.	0.9	22
208	A Case Study of Polyether Ether Ketone (I): Investigating the Thermal and Fire Behavior of a High-Performance Material. Polymers, 2020, 12, 1789.	2.0	22
209	Mapping the multimodal action of melamine-poly(aluminium phosphate) in the flame retardancy of polyamide 66. RSC Advances, 2014, 4, 18406-18418.	1.7	21
210	Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling. Materials, 2015, 8, 7837-7863.	1.3	21
211	In-situ investigation of temperature evolution of drippings via an optimized UL-94 instrumentation: Application to flame retarded polybutylene succinate. Polymer Degradation and Stability, 2018, 155, 145-152.	2.7	21
212	Blends of Wool with High Performance Fibers as Heat and Fire Resistant Fabrics. Journal of Fire Sciences, 2002, 20, 3-22.	0.9	20
213	Aging of the flameâ€retardant properties of polycarbonate and polypropylene protected by an intumescent coating. Journal of Applied Polymer Science, 2014, 131, .	1.3	20
214	Flame retardancy and mechanical properties of flax reinforced woven for composite applications. Journal of Industrial Textiles, 2015, 44, 665-681.	1.1	20
215	Topcoats versus Durability of an Intumescent Coating. Industrial & Engineering Chemistry Research, 2016, 55, 9625-9632.	1.8	20
216	Preparation of multinuclear microparticles using a polymerization in emulsion process. Journal of Applied Polymer Science, 2008, 107, 2444-2452.	1.3	19

#	Article	IF	CITATIONS
217	Salen Copper Complexes: A Novel Flame Retardant for Thermoplastic Polyurethane. ACS Symposium Series, 2009, , 329-340.	0.5	19
218	The fire retardant mechanism of ethylene vinyl acetate elastomer (EVM) containing aluminium trihydroxide and melamine phosphate. RSC Advances, 2014, 4, 20185-20199.	1.7	19
219	Revisited investigation of fire behavior of ethylene vinyl acetate/aluminum trihydroxide using a combination of mass loss cone, Fourier transform infrared spectroscopy and electrical low pressure impactor. Polymer Degradation and Stability, 2014, 106, 26-35.	2.7	19
220	Thermal and flame retardant properties of ethylene vinyl acetate copolymers containing deoxyribose nucleic acid or ammonium polyphosphate. Journal of Thermal Analysis and Calorimetry, 2015, 122, 705-715.	2.0	19
221	Fire retardant sol–gel coatings for flexible polyurethane foams. RSC Advances, 2016, 6, 28543-28554.	1.7	19
222	Measurement of kinetics and thermodynamics of the thermal degradation for flame retarded materials: Application to EVA/ATH/NC. Journal of Analytical and Applied Pyrolysis, 2017, 124, 130-148.	2.6	19
223	Guanidine Hydrogen Phosphate-Based Flame-Retardant Formulations for Cotton. Journal of Industrial Textiles, 2004, 34, 27-38.	1.1	18
224	Enhanced fire retardant properties of glass-fiber reinforced Polyamide 6,6 by combining bulk and surface treatments: Toward a better understanding of the fire-retardant mechanism. Polymer Degradation and Stability, 2013, 98, 1378-1388.	2.7	18
225	Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions. Thermochimica Acta, 2014, 590, 73-83.	1.2	18
226	Impact of the formulation of biosourced phenolic foams on their fire properties. Polymer Degradation and Stability, 2018, 153, 1-14.	2.7	18
227	Intumescence and Nanocomposites: a Novel Route for Flame-Retarding Polymeric Materials. , 0, , 131-162.		17
228	Non-isothermal crystallization kinetics of iPP/sPP blends. Thermochimica Acta, 2009, 481, 32-45.	1.2	17
229	Improvement of heat resistance of high performance fibers using a cold plasma polymerization process. Surface and Coatings Technology, 2010, 205, 745-758.	2.2	17
230	Preparation of fire-resistant poly(styrene-co-acrylonitrile) foams using supercritical CO2 technology. Journal of Materials Chemistry, 2010, 20, 1567.	6.7	17
231	Smoke composition using MLC/FTIR/ELPI: Application to flame retarded ethylene vinyl acetate. Polymer Degradation and Stability, 2015, 115, 89-109.	2.7	17
232	Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based nanocomposites: influence of the microstructure on the barrier properties. Physical Chemistry Chemical Physics, 2015, 17, 11313-11323.	1.3	17
233	Getting a better insight into the chemistry of decomposition of complex flame retarded formulation: New insights using solid state NMR. Polymer Degradation and Stability, 2018, 153, 145-154.	2.7	17
234	Eugenol-based thermally stable thermosets by Alder-ene reaction: From synthesis to thermal degradation. European Polymer Journal, 2019, 117, 337-346.	2.6	17

#	Article	IF	CITATIONS
235	Additive manufacturing of fireâ€retardant ethyleneâ€vinyl acetate. Polymers for Advanced Technologies, 2019, 30, 1878-1890.	1.6	17
236	Burning behavior and thermal degradation kinetics of surface photografted polyamide 6.6 fabric. Polymers for Advanced Technologies, 2012, 23, 1550-1554.	1.6	16
237	Reactive Extrusion of Stereocomplexed Polyâ€ <scp>L</scp> , <scp>D</scp> â€lactides: Processing, Characterization, and Properties. Macromolecular Materials and Engineering, 2013, 298, 1016-1023.	1.7	16
238	Characterization of the morphology of iPP/sPP blends with various compositions. EXPRESS Polymer Letters, 2013, 7, 224-237.	1.1	16
239	Protection mechanism of a flame-retarded polyamide 6 nanocomposite. Journal of Fire Sciences, 2014, 32, 241-256.	0.9	16
240	Fractal conceptualization of intumescent fire barriers, toward simulations of virtual morphologies. Scientific Reports, 2019, 9, 1872.	1.6	16
241	Improving the flame retardant properties of polyesterâ€cotton blend fabrics by introducing an intumescent coating via layer by layer assembly. Journal of Applied Polymer Science, 2020, 137, 49253.	1.3	16
242	Poly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile). Journal of Materials Chemistry, 2008, 18, 4623.	6.7	15
243	Melt spinning of silane–water cross-linked polyethylene–octene through a reactive extrusion process. Reactive and Functional Polymers, 2010, 70, 775-783.	2.0	15
244	Reactive extrusion of intumescent stereocomplexed polyâ€L,Dâ€lactide: characterization and reaction to fire. Polymers for Advanced Technologies, 2013, 24, 130-133.	1.6	15
245	Intumescence as method for providing fire resistance to structural composites: application to poly(ethylene terephtalate) foam sandwich–structured composite. Composite Interfaces, 2013, 20, 269-277.	1.3	15
246	Influence of two kinds of low dimensional nano-sized silicate clay on the flame retardancy of polypropylene. Materials Chemistry and Physics, 2020, 256, 123743.	2.0	15
247	Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide. Fire Safety Journal, 2021, 120, 103060.	1.4	15
248	Intumescent polybutylene succinate: Ethylenediamine phosphate and synergists. Polymer Degradation and Stability, 2021, 192, 109707.	2.7	15
249	Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Safety Journal, 2022, 128, 103543.	1.4	15
250	Characterization of SWCNT and PAN/SWCNT films. Carbon, 2007, 45, 2417-2423.	5.4	14
251	Intumescent Polymer Metal Laminates for Fire Protection. Polymers, 2018, 10, 995.	2.0	14
252	3D printed sandwich materials filled with hydrogels for extremely low heat release rate. Polymer Degradation and Stability, 2020, 179, 109269.	2.7	14

#	Article	IF	CITATIONS
253	Wool/para-aramid fibres blended in spun yarns as heat and fire resistant fabrics. Polymer Degradation and Stability, 2002, 77, 279-284.	2.7	13
254	Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile) Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch. Advances in Materials Science and Engineering, 2008, 2008, 1-11.	1.0	13
255	Thermal degradation of elastomeric vulcanized poly(ethylene-co-vinyl acetate) (EVM): Chemical and kinetic investigations. Polymer Degradation and Stability, 2011, 96, 1812-1820.	2.7	13
256	Highly loaded nanocomposite films as fire protective coating for polymeric substrates. Journal of Fire Sciences, 2014, 32, 145-164.	0.9	13
257	Innovative 3D printed design to conceive highly fire-retardant multi-material. Polymer Degradation and Stability, 2019, 169, 108992.	2.7	13
258	Pressure effects on morphology of isotropic char layer, shrinkage, cracking and reduced heat transfer of wooden material. Proceedings of the Combustion Institute, 2021, 38, 5063-5071.	2.4	13
259	Characterisation and reaction to fire of "M5―rigid rod polymer fibres. Journal of Materials Science, 2003, 38, 2187-2194.	1.7	12
260	Quantification of Thermal Barrier Efficiency of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites. Coatings, 2018, 8, 347.	1.2	12
261	A new approach on improving the fire resistance of polyamide 11 by incorporating sulfurâ€based flame retardant. Polymers for Advanced Technologies, 2019, 30, 1605-1615.	1.6	12
262	The Thermal Behaviour of a Blend of Cotton and Fire-retardant Polyester Fibres: A Kinetic Study. Journal of the Textile Institute, 1997, 88, 64-75.	1.0	11
263	Flame retardancy of bitumen: A calorimetry study. Journal of Fire Sciences, 2013, 31, 112-130.	0.9	11
264	Fire retardancy of a new polypropylene-grafted starch: Part II: investigation of mechanisms. Journal of Fire Sciences, 2014, 32, 210-229.	0.9	11
265	Preparation of Glass Fabric/Poly(l-lactide) Composites by Thermoplastic Resin Transfer Molding. Polymers, 2019, 11, 339.	2.0	11
266	Kinetic analysis of the thermal degradation of polystyrene?montmorillonite nanocomposite. Polymer Degradation and Stability, 2004, 84, 483-483.	2.7	10
267	Pathways to Biodegradable Flame Retardant Polymer (Nano)Composites. , 2014, , 709-773.		10
268	A Case Study of Polyetheretherketone (II): Playing with Oxygen Concentration and Modeling Thermal Decomposition of a High-Performance Material. Polymers, 2020, 12, 1577.	2.0	10
269	Design of fire resistant, sound-absorbing and thermal-insulated expandable polystyrene based lightweight particleboard composites. Construction and Building Materials, 2021, 305, 124773.	3.2	10
270	13 C, 25 Mg and 11 B solid-state NMR study of a fire retarded ethylene-vinyl acetate copolymer. Macromolecular Symposia, 1997, 119, 309-315.	0.4	9

#	Article	IF	CITATIONS
271	Influence of the Recycling Process on the Fireâ€Retardant Properties of PP/EPR Blends. Macromolecular Materials and Engineering, 2011, 296, 494-505.	1.7	9
272	Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part II—Comparison with Experimental Results. Materials, 2017, 10, 470.	1.3	9
273	Intumescent polypropylene in extreme fire conditions. Fire Safety Journal, 2021, 120, 103082.	1.4	9
274	Novel synergists for flame retarded glass-fiber reinforced poly(1,4-butylene terephthalate). Polimery, 2013, 58, 403-412.	0.4	9
275	Natural mineral fire retardant fillers for polyethylene. Fire and Materials, 2011, 35, 183-192.	0.9	8
276	Simultaneously improving the thermal conductive and flame retardant performance for epoxy resins thermosets by constructing coreâ€shellâ€brush structure and distributing of MWCNTs in brush intervals. Polymers for Advanced Technologies, 2020, 31, 589-601.	1.6	8
277	Low-Emissivity Metal/Dielectric Coatings as Radiative Barriers for the Fire Protection of Raw and Formulated Polymers. ACS Applied Polymer Materials, 2020, 2, 2880-2889.	2.0	8
278	Flammability properties of intumescent vinyl acetate–ethylene copolymer emulsion including natural carbonization agent. Polymer, 2022, 245, 124709.	1.8	8
279	Intumescent PP Blends. Polymers and Polymer Composites, 2003, 11, 691-702.	1.0	7
280	Effects of Fire Retardants and Nanofillers on the Fire Toxicity. ACS Symposium Series, 2009, , 342-366.	0.5	7
281	Fire retardancy of a new polypropylene-grafted starch. Journal of Fire Sciences, 2013, 31, 563-575.	0.9	7
282	Influence of model assumptions on charring polymer decomposition in the cone calorimeter. Journal of Fire Sciences, 2018, 36, 181-201.	0.9	7
283	A Facile Technique to Extract the Cross-Sectional Structure of Brittle Porous Chars from Intumescent Coatings. Polymers, 2019, 11, 640.	2.0	7
284	Fabrication of Fly Ashâ€Based Mesoporous Aluminosilicate Oxides Loaded with Zinc and its Synergistic Fire Resistancy in Polypropylene. Journal of Vinyl and Additive Technology, 2020, 26, 135-143.	1.8	7
285	Intumescent polypropylene: Interactions between physical and chemical expansion. Fire and Materials, 2021, 45, 387-395.	0.9	7
286	Nonwoven as heat barrier: Modeling of the efficiency of Carbtex fibers. Journal of Applied Polymer Science, 2008, 108, 3245-3255.	1.3	6
287	Fire behavior of simulated low voltage intumescent cables with and without electric current. Journal of Fire Sciences, 2017, 35, 179-194.	0.9	6
288	Three model-Free methods for calculation of activation energy in TG. Journal of Thermal Analysis and Calorimetry, 2004, 78, 1009-1027.	2.0	6

#	Article	IF	CITATIONS
289	Thermoplastic Polyurethanes as Carbonization Agents in Intumescent Blends. Part 2: Thermal Behavior of Polypropylene/Thermoplastic Polyurethane/Ammonium Polyphosphate Blends. Journal of Fire Sciences, 2000, 18, 7-27.	0.9	6
290	USE OF INORGANIC PHOSPHATES IN FIRE RETARDED THERMOPLASTICS-A REVIEW. Phosphorus Research Bulletin, 1999, 10, 88-93.	0.1	5
291	Rheological and thermogravimetric studies of the crosslinking process of functionalized acrylic latexes. Journal of Applied Polymer Science, 2006, 99, 1117-1123.	1.3	5
292	Thermal and fire degradation of recycled and polluted polypropyleneâ€based materials. Journal of Applied Polymer Science, 2009, 112, 2270-2279.	1.3	5
293	Functionalized-Carbon Multiwall Nanotube as Flame Retardant for Polylactic Acid. ACS Symposium Series, 2009, , 25-34.	0.5	5
294	Thermally Stable and Flame Retardant Elastomeric Nanocomposites. Advanced Structured Materials, 2011, , 155-178.	0.3	5
295	Combining Low-Emissivity Thin Coating and 3D-Printed Original Designs for Superior Fire-Protective Performance. ACS Omega, 2020, 5, 27857-27863.	1.6	5
296	Formulation of eco-friendly sol–gel coatings to flame-retard flexible polyurethane foam. Green Materials, 2020, 8, 139-149.	1.1	5
297	Bilayer Intumescent Paint Metal Laminates: A Novel Design for a High-Performance Fire Barrier. Industrial & Engineering Chemistry Research, 2020, 59, 2988-2997.	1.8	5
298	Fire Performance of Curable Silicone-Based Coatings. ACS Symposium Series, 2012, , 205-221.	0.5	4
299	Flame retardancy and thermal and mechanical performance of intercalated, layered double hydroxide composites of polyamide 11, aluminum phosphinate, and sulfamic acid. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
300	Fire tests at reduced scale as powerful tool to fasten the development of flame-retarded material: Application to cables. Journal of Fire Sciences, 2016, 34, 240-264.	0.9	4
301	Characterization of in-flame soot from balsa composite combustion during mass loss cone calorimeter tests. Polymer Degradation and Stability, 2018, 154, 304-311.	2.7	4
302	Intumescent silicone-based coatings for the fire protection of carbon fiber reinforced composites. Fire Safety Science, 2014, 11, 781-793.	0.3	4
303	Flame Retardancy of Lightweight Sandwich Composites. Journal of Composites Science, 2021, 5, 274.	1.4	4
304	The preparation of polyamide 11 composites with extremely long ignition time. Polymers for Advanced Technologies, 0, , .	1.6	3
305	Flame retardant nanocomposites with polymer blends. , 2011, , 186-209.		2
306	Effect of spin finish on fiber/binder adhesion in chemically bonded nonwovens. Journal of Applied Polymer Science, 2006, 102, 4092-4100.	1.3	2

#	Article	IF	CITATIONS
307	Quantitative analysis of automotive exhaust gas by Fourier Transform Infrared spectroscopy. International Journal of Environmental Technology and Management, 2010, 13, 188.	0.1	2
308	The electron microanalyzer (EPMA): a powerful device for the microanalysis of filled polymeric materials. Polymers for Advanced Technologies, 2015, 26, 1020-1026.	1.6	2
309	New approach for the efficient attainment of flame retardancy using multi component injection molding. AIP Conference Proceedings, 2019, , .	0.3	2
310	Anisotropy of expandable graphite to explain its behavior as a flame-retardant. Journal of Fire Sciences, 2021, 39, 109-118.	0.9	2
311	Reaction to fire of polymethylmethacrylate and polyvinylchloride under reduced oxygen concentrations in a controlled-atmospherecone calorimeter. Journal of Fire Sciences, 2022, 40, 274-292.	0.9	2
312	Oxygen concentration and modeling thermal decomposition of a highâ€performance material: A case study of polyimide (Cirlex). Polymers for Advanced Technologies, 2021, 32, 54-66.	1.6	1
313	Jetfire lab: Jetfire at reduced scale. Journal of Fire Sciences, 2021, 39, 455-476.	0.9	1
314	Prof. Menachem Lewin. Polymers for Advanced Technologies, 2008, 19, 443-445.	1.6	0
315	Reprocessed High Impact Polypropylene Containing Oil Pollutant Exhibiting Flame Retardant Properties. Macromolecular Symposia, 2011, 301, 31-39.	0.4	0
316	An efficient bi-layer intumescent paint metal laminate fire barrier for various substrates: Extension to other application. European Journal of Materials, 2021, 1, 19-33.	0.8	0
317	Foamed geopolymers for fire protection: Burnâ€ŧhrough testing and modeling. Fire and Materials, 0, , .	0.9	0