Bo N J Persson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7916206/bo-n-j-persson-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,854 80 136 407 h-index g-index citations papers 24,661 7.56 3.3 414 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
407	On the Stability of Spinning Asteroids. <i>Tribology Letters</i> , 2022 , 70, 1	2.8	2
406	Air, Helium and Water Leakage in Rubber O-ring Seals with Application to Syringes. <i>Tribology Letters</i> , 2022 , 70, 1	2.8	0
405	Fluid Leakage in Static Rubber Seals. <i>Tribology Letters</i> , 2022 , 70, 1	2.8	O
404	Air leakage in seals with application to syringes. <i>Applied Surface Science Advances</i> , 2022 , 8, 100222	2.6	
403	Rubber Wear and the Role of Transfer Films on Rubber Friction on Hard Rough Substrates. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	3
402	Rubber Adhesion and Friction: Role of Surface Energy and Contamination Films. <i>Frontiers in Mechanical Engineering</i> , 2021 , 6,	2.6	2
401	Side-leakage of face mask. <i>European Physical Journal E</i> , 2021 , 44, 75	1.5	2
400	Comments on the Theory of Fluid Flow Between Solids with Anisotropic Roughness. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	3
399	Cylinder-Flat Contact Mechanics with Surface Roughness. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	4
398	A simple model for viscoelastic crack propagation. European Physical Journal E, 2021, 44, 3	1.5	4
397	General theory of electroadhesion. <i>Journal of Physics Condensed Matter</i> , 2021 , 33,	1.8	2
396	On Opening Crack Propagation in Viscoelastic Solids. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	4
395	Physics of Suction Cups in Air and in Water. <i>Biologically-inspired Systems</i> , 2021 , 187-209	0.7	2
394	Lubricated sliding friction: Role of interfacial fluid slip and surface roughness. <i>European Physical Journal E</i> , 2020 , 43, 9	1.5	5
393	Comment on I Dn the Origin of Frictional Energy Dissipation <i>Tribology Letters</i> , 2020 , 68, 1	2.8	1
392	Electric field effect in heat transfer in 2D devices. Journal of Physics Condensed Matter, 2020, 32, 25530	11.8	5
391	Conveyor Belt Drive Physics. <i>Tribology Letters</i> , 2020 , 68, 1	2.8	4

(2018-2020)

390	Fluid Leakage in Metallic Seals. <i>Tribology Letters</i> , 2020 , 68, 1	2.8	5
389	Plastic Deformation of Rough Metallic Surfaces. <i>Tribology Letters</i> , 2020 , 68, 1	2.8	6
388	Interfacial fluid flow for systems with anisotropic roughness. European Physical Journal E, 2020, 43, 25	1.5	5
387	Sphere and cylinder contact mechanics during slip. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 143, 104094	5	11
386	Adhesion paradox: Why adhesion is usually not observed for macroscopic solids. <i>Physical Review E</i> , 2020 , 102, 042803	2.4	8
385	Cylinder-flat-surface contact mechanics during sliding. <i>Physical Review E</i> , 2020 , 102, 043002	2.4	1
384	Viscoelastic Crack Propagation: Review of Theories and Applications. <i>Advances in Polymer Science</i> , 2020 , 377-420	1.3	6
383	Electroadhesion with application to touchscreens. Soft Matter, 2019, 15, 1758-1775	3.6	20
382	Adhesion and Friction for Three Tire Tread Compounds. <i>Lubricants</i> , 2019 , 7, 20	3.1	14
381	Linear and Nonlinear Viscoelastic Modulus of Rubber. <i>Lubricants</i> , 2019 , 7, 22		_
		3.1	7
380	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. Journal of Chemical Physics, 2019, 150, 054701	3.1	2
380	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces.		
	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. Journal of Chemical Physics, 2019 , 150, 054701	3.9	2
379	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. Journal of Chemical Physics, 2019, 150, 054701 Contact Mechanics for Solids with Randomly Rough Surfaces and Plasticity. Lubricants, 2019, 7, 90 Electroadhesion for soft adhesive pads and robotics: theory and numerical results. Soft Matter,	3.9	2
379 378	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. Journal of Chemical Physics, 2019, 150, 054701 Contact Mechanics for Solids with Randomly Rough Surfaces and Plasticity. Lubricants, 2019, 7, 90 Electroadhesion for soft adhesive pads and robotics: theory and numerical results. Soft Matter, 2019, 15, 8032-8039	3.9 3.1 3.6	2 4 10
379 378 377	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. <i>Journal of Chemical Physics</i> , 2019 , 150, 054701 Contact Mechanics for Solids with Randomly Rough Surfaces and Plasticity. <i>Lubricants</i> , 2019 , 7, 90 Electroadhesion for soft adhesive pads and robotics: theory and numerical results. <i>Soft Matter</i> , 2019 , 15, 8032-8039 Physics of suction cups. <i>Soft Matter</i> , 2019 , 15, 9482-9499	3.9 3.1 3.6	2 4 10
379 378 377 376	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. <i>Journal of Chemical Physics</i> , 2019 , 150, 054701 Contact Mechanics for Solids with Randomly Rough Surfaces and Plasticity. <i>Lubricants</i> , 2019 , 7, 90 Electroadhesion for soft adhesive pads and robotics: theory and numerical results. <i>Soft Matter</i> , 2019 , 15, 8032-8039 Physics of suction cups. <i>Soft Matter</i> , 2019 , 15, 9482-9499 Rolling friction of elastomers: role of strain softening. <i>Soft Matter</i> , 2019 , 15, 9233-9243 The dependency of adhesion and friction on electrostatic attraction. <i>Journal of Chemical Physics</i> ,	3.9 3.1 3.6 3.6	2 4 10 11

372	On the load dependence of friction: Role of the long-range elastic coupling. <i>Tribology International</i> , 2018 , 123, 209-215	4.9	3
371	Contact mechanics for polydimethylsiloxane: from liquid to solid. <i>Soft Matter</i> , 2018 , 14, 1142-1148	3.6	10
370	Influence of anisotropic surface roughness on lubricated rubber friction: Extended theory and an application to hydraulic seals. <i>Wear</i> , 2018 , 410-411, 43-62	3.5	15
369	Adhesion between rubber and glass in dry and lubricated condition. <i>Journal of Chemical Physics</i> , 2018 , 148, 234702	3.9	8
368	Rubber friction: The contribution from the area of real contact. <i>Journal of Chemical Physics</i> , 2018 , 148, 224701	3.9	19
367	Adhesion and friction between glass and rubber in the dry state and in water: role of contact hydrophobicity. <i>Soft Matter</i> , 2018 , 14, 5428-5441	3.6	7
366	Interfacial leakage of elastomer seals at low temperatures. <i>International Journal of Pressure Vessels and Piping</i> , 2018 , 160, 14-23	2.4	12
365	Contact mechanics between the human finger and a touchscreen under electroadhesion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12668-12673	3 ^{11.5}	42
364	Ice friction: Glacier sliding on hard randomly rough bed surface. <i>Journal of Chemical Physics</i> , 2018 , 149, 234701	3.9	5
363	On the Use of Silicon Rubber Replica for Surface Topography Studies. <i>Tribology Letters</i> , 2018 , 66, 1	2.8	12
362	Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 1239-1246	3	4
361	Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models and Persson Theory. <i>Tribology Letters</i> , 2018 , 66, 1	2.8	48
360	The effect of surface roughness and viscoelasticity on rubber adhesion. <i>Soft Matter</i> , 2017 , 13, 3602-362	13.6	58
359	Elastohydrodynamics for Soft Solids with Surface Roughness: Transient Effects. <i>Tribology Letters</i> , 2017 , 65, 1	2.8	3
358	Meeting the Contact-Mechanics Challenge. <i>Tribology Letters</i> , 2017 , 65, 1	2.8	163
357	Crack propagation in finite-sized viscoelastic solids with application to adhesion. <i>Europhysics Letters</i> , 2017 , 119, 18002	1.6	12
356	Simple contact mechanics model of the vertebrate cartilage. <i>Soft Matter</i> , 2017 , 13, 6349-6362	3.6	4
355	Rubber contact mechanics: adhesion, friction and leakage of seals. <i>Soft Matter</i> , 2017 , 13, 9103-9121	3.6	37

(2015-2017)

354	Role of Preload in Adhesion of Rough Surfaces. <i>Physical Review Letters</i> , 2017 , 118, 238001	7.4	23
353	Dependency of Rubber Friction on Normal Force or Load: Theory and Experiment. <i>Tire Science and Technology</i> , 2017 , 45, 25-54	0.7	15
352	Multiscale Contact Mechanics with Application to Seals and Rubber Friction on Dry and Lubricated Surfaces. <i>Advances in Polymer Science</i> , 2016 , 103-156	1.3	7
351	Quantum Vavilov-Cherenkov radiation from shearing two transparent dielectric plates. <i>Physical Review B</i> , 2016 , 93,	3.3	3
350	The effect of finite roughness size and bulk thickness on the prediction of rubber friction and contact mechanics. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2016 , 230, 1398-1409	1.3	6
349	Rubber Friction on Ice: Experiments and Modeling. <i>Tribology Letters</i> , 2016 , 62, 1	2.8	26
348	On the dependency of friction on load: Theory and experiment. <i>Europhysics Letters</i> , 2016 , 113, 56002	1.6	15
347	Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion. <i>Tribology Letters</i> , 2016 , 62, 1	2.8	5
346	Fundamentals of Adhesion 2016 ,		1
345	Soft matter dynamics: Accelerated fluid squeeze-out during slip. <i>Journal of Chemical Physics</i> , 2016 , 144, 124903	3.9	15
344	Rubber friction directional asymmetry. Europhysics Letters, 2016, 116, 66002	1.6	7
343	Contact mechanics for poroelastic, fluid-filled media, with application to cartilage. <i>Journal of Chemical Physics</i> , 2016 , 145, 234703	3.9	4
342	Silicone Rubber Adhesion and Sliding Friction. <i>Tribology Letters</i> , 2016 , 62, 1	2.8	15
342	Silicone Rubber Adhesion and Sliding Friction. <i>Tribology Letters</i> , 2016 , 62, 1 The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity. <i>Nanotechnology</i> , 2016 , 27, 445401	2.8	15
	The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films		
341	The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity. <i>Nanotechnology</i> , 2016 , 27, 445401	3.4	6
341	The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity. <i>Nanotechnology</i> , 2016 , 27, 445401 Leakage of Metallic Seals: Role of Plastic Deformations. <i>Tribology Letters</i> , 2016 , 63, 1 Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of	3·4 2.8	6

336	Fluid contact angle on solid surfaces: Role of multiscale surface roughness. <i>Journal of Chemical Physics</i> , 2015 , 143, 134705	3.9	20
335	General theory of frictional heating with application to rubber friction. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 175008	1.8	17
334	Ice friction: Role of non-uniform frictional heating and ice premelting. <i>Journal of Chemical Physics</i> , 2015 , 143, 224701	3.9	25
333	Author Response to the Comment by Popov on Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of Dimensionality (Tribology Letters, 2015, 60, 1	2.8	1
332	Friction and universal contact area law for randomly rough viscoelastic contacts. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 105102	1.8	34
331	On the Fractal Dimension of Rough Surfaces. <i>Tribology Letters</i> , 2014 , 54, 99-106	2.8	173
330	Rolling Friction: Comparison of Analytical Theory with Exact Numerical Results. <i>Tribology Letters</i> , 2014 , 55, 15-21	2.8	16
329	Role of hydrophobicity on interfacial fluid flow: theory and some applications. <i>European Physical Journal E</i> , 2014 , 37, 12	1.5	13
328	Theory of viscoelastic lubrication. <i>Tribology International</i> , 2014 , 72, 118-130	4.9	43
327	Master curve of viscoelastic solid: Using causality to determine the optimal shifting procedure, and to test the accuracy of measured data. <i>Polymer</i> , 2014 , 55, 565-571	3.9	38
326	Surface topography and contact mechanics of dry and wet human skin. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1341-8	3	28
325	Tire R oad Contact Stiffness. <i>Tribology Letters</i> , 2014 , 56, 397-402	2.8	23
324	Role of Frictional Heating in Rubber Friction. <i>Tribology Letters</i> , 2014 , 56, 77-92	2.8	18
323	Comment on B ully covariant radiation force on a polarizable particle\(\textit{D}\) New Journal of Physics, 2014 , 16, 118001	2.9	10
322	Thermal interface resistance: crossover from nanoscale to macroscale. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 015009	1.8	8
321	Theory of adhesion: role of surface roughness. <i>Journal of Chemical Physics</i> , 2014 , 141, 124701	3.9	126
320	Finite-size scaling in the interfacial stiffness of rough elastic contacts. <i>Physical Review E</i> , 2013 , 87, 0628	30 2 .4	74
319	Contact Mechanics and Friction on Dry and Wet Human Skin. <i>Tribology Letters</i> , 2013 , 50, 17-30	2.8	46

(2011-2013)

318	Comment on "Friction between a viscoelastic body and a rigid surface with random self-affine roughness". <i>Physical Review Letters</i> , 2013 , 111, 189401	7.4	13
317	On the Validity of the Method of Reduction of Dimensionality: Area of Contact, Average Interfacial Separation and Contact Stiffness. <i>Tribology Letters</i> , 2013 , 52, 223-229	2.8	11
316	Effect of the electric current on the Casimir force between graphene sheets. <i>JETP Letters</i> , 2013 , 98, 14	3-11-149	1
315	Adhesion of cellulose fibers in paper. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 045002	1.8	35
314	Rubber friction for tire tread compound on road surfaces. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 095007	1.8	36
313	Adhesion: role of bulk viscoelasticity and surface roughness. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 225004	1.8	40
312	Contact electrification and the work of adhesion. <i>Europhysics Letters</i> , 2013 , 103, 36003	1.6	14
311	Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting. Journal of Physics Condensed Matter, 2013 , 25, 445013	1.8	22
310	Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments. <i>Tribology Letters</i> , 2012 , 45, 185-194	2.8	140
309	Time-Dependent Fluid Squeeze-Out Between Soft Elastic Solids with Randomly Rough Surfaces. <i>Tribology Letters</i> , 2012 , 47, 409-416	2.8	20
308	Effective viscosity of confined hydrocarbons. <i>Physical Review Letters</i> , 2012 , 108, 036102	7.4	41
307	Contact mechanics for layered materials with randomly rough surfaces. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 095008	1.8	20
306	Elastic contact mechanics: percolation of the contact area and fluid squeeze-out. <i>European Physical Journal E</i> , 2012 , 35, 5	1.5	40
305	Reply to the D iscussion of the Paper by Krick et al.: Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments <i>Tribology Letters</i> , 2012 , 46, 207-209	2.8	1
304	On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 225008	1.8	17
303	Self-affine elastic contacts: percolation and leakage. <i>Physical Review Letters</i> , 2012 , 108, 244301	7.4	113
302	Quantum friction. <i>Physical Review Letters</i> , 2011 , 106, 094502	7.4	80
301	Transverse and normal interfacial stiffness of solids with randomly rough surfaces. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 085001	1.8	97

300	Near-field radiative heat transfer and van der Waals friction between closely spaced graphene and amorphous SiO2. <i>Journal of Physics: Conference Series</i> , 2011 , 291, 012018	0.3	2
299	Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques. <i>Journal of the Mechanics and Physics of Solids</i> , 2011 , 59, 2355-2369	5	106
298	Lubricated sliding dynamics: flow factors and Stribeck curve. European Physical Journal E, 2011, 34, 113	1.5	31
297	Rubber friction: comparison of theory with experiment. European Physical Journal E, 2011, 34, 1-11	1.5	55
296	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory. <i>Soft Matter</i> , 2011 , 7, 10395	3.6	57
295	Phononic heat transfer across an interface: thermal boundary resistance. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 045009	1.8	47
294	Comment on No quantum friction between uniformly moving plates New Journal of Physics, 2011 , 13, 068001	2.9	15
293	Fluid squeeze-out between rough surfaces: comparison of theory with experiment. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 355005	1.8	9
292	Adhesion between elastic solids with randomly rough surfaces: Comparison of analytical theory with molecular-dynamics simulations. <i>Europhysics Letters</i> , 2011 , 96, 66003	1.6	32
291	Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2. <i>Physical Review B</i> , 2011 , 83,	3.3	64
290	Rubber friction and tire dynamics. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 015003	1.8	37
289	Heat transfer between graphene and amorphous SiO2. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 462201	1.8	35
288	Lateral hopping of CO on Cu(111) induced by femtosecond laser pulses. <i>Physical Review B</i> , 2010 , 82,	3.3	3
287	Comment on "Diffusion and dimer formation of CO molecules induced by femtosecond laser pulses". <i>Physical Review Letters</i> , 2010 , 104, 239601	7.4	
286	Surface roughness of peeled adhesive tape: A mystery?. Europhysics Letters, 2010, 92, 46001	1.6	22
285	Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. Journal of Physics Condensed Matter, 2010 , 22, 265004	1.8	34
284	Heat transfer between weakly coupled systems: Graphene on a-SiO 2. Europhysics Letters, 2010 , 91, 560	 1 0:1 6	37
283	On the dependence of the leak rate of seals on the skewness of the surface height probability distribution. <i>Europhysics Letters</i> , 2010 , 90, 38002	1.6	19

(2008-2010)

282	Velocity dependence of friction of confined hydrocarbons. <i>Langmuir</i> , 2010 , 26, 8721-8	4	32
281	Surface-roughnessInduced electric-field enhancement and triboluminescence. <i>Europhysics Letters</i> , 2010 , 91, 46003	1.6	24
280	Heat transfer between elastic solids with randomly rough surfaces. <i>European Physical Journal E</i> , 2010 , 31, 3-24	1.5	64
279	Leak rate of seals: Effective-medium theory and comparison with experiment. <i>European Physical Journal E</i> , 2010 , 31, 159-67	1.5	80
278	Time-dependent fluid squeeze-out between solids with rough surfaces. <i>European Physical Journal E</i> , 2010 , 32, 281-90	1.5	29
277	Rolling friction for hard cylinder and sphere on viscoelastic solid. <i>European Physical Journal E</i> , 2010 , 33, 327-33	1.5	65
276	Lateral hopping of CO molecules on Pt(111) surface by femtosecond laser pulses. <i>Physical Review B</i> , 2009 , 80,	3.3	5
275	Numerical and Experimental Investigation on O-Ring-Seals in Dynamic Applications. <i>International Journal of Fluid Power</i> , 2009 , 10, 51-59		7
274	Leak rate of seals: Comparison of theory with experiment. <i>Europhysics Letters</i> , 2009 , 86, 44006	1.6	56
273	On the transition from boundary lubrication to hydrodynamic lubrication in hoft contacts. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 185002	1.8	39
272	Theory of powdery rubber wear. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 485001	1.8	22
271	Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 015003	1.8	33
270	Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. <i>European Physical Journal E</i> , 2009 , 29, 275-84	1.5	105
269	Theory of the interaction forces and the radiative heat transfer between moving bodies. <i>Physical Review B</i> , 2008 , 78,	3.3	71
268	On the origin of Amonton friction law. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 395006	1.8	49
267	Contact mechanics: contact area and interfacial separation from small contact to full contact. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 215214	1.8	114
266	Rubber friction on (apparently) smooth lubricated surfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 085223	1.8	27
265	Capillary adhesion between elastic solids with randomly rough surfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 315007	1.8	59

264	On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 312001	1.8	50
263	Heat transfer between adsorbate and laser-heated hot electrons. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 224016	1.8	7
262	Contact mechanics with adhesion: Interfacial separation and contact area. <i>Europhysics Letters</i> , 2008 , 84, 46004	1.6	24
261	Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses. <i>Physical Review B</i> , 2008 , 78,	3.3	8
260	Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. <i>Physical Review Letters</i> , 2008 , 100, 024303	7.4	59
259	Theory of the leak-rate of seals. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 315011	1.8	90
258	van der Waals frictional drag induced by liquid flow in low-dimensional systems. <i>Physical Review B</i> , 2008 , 77,	3.3	4
257	Heating of adsorbate by vibrational-mode coupling. <i>Physical Review B</i> , 2008 , 77,	3.3	18
256	Influence of frozen capillary waves on contact mechanics. Wear, 2008, 264, 746-749	3.5	8
255	Nanodroplets on rough hydrophilic and hydrophobic surfaces. <i>European Physical Journal E</i> , 2008 , 25, 139-52	1.5	52
254	Frictional properties of confined polymers. European Physical Journal E, 2008, 27, 37-46	1.5	27
253	On pattern transfer in replica molding. <i>Langmuir</i> , 2008 , 24, 6636-9	4	27
252	Relation between interfacial separation and load: a general theory of contact mechanics. <i>Physical Review Letters</i> , 2007 , 99, 125502	7.4	166
251	Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems. <i>Journal of Experimental and Theoretical Physics</i> , 2007 , 104, 96-110	1	13
250	. Physics-Uspekhi, 2007 , 50, 879	2.8	19
249	Heat transfer at surfaces exposed to short-pulsed laser fields. <i>Physical Review B</i> , 2007 , 76,	3.3	15
248	Effect of Surface Roughness and Adsorbates on Superlubricity 2007 , 131-146		2
247	Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope. <i>Physical Review B</i> , 2007 , 75,	3.3	33

(2006-2007)

246	Vibrational heating of molecules adsorbed on insulating surfaces using localized photon tunneling. <i>Physical Review B</i> , 2007 , 75,	3.3	5
245	Biological Adhesion for Locomotion on Rough Surfaces: Basic Principles and A Theorist View. <i>MRS Bulletin</i> , 2007 , 32, 486-490	3.2	51
244	Wet adhesion with application to tree frog adhesive toe pads and tires. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 376110	1.8	92
243	Near-field radiative heat transfer and noncontact friction. <i>Reviews of Modern Physics</i> , 2007 , 79, 1291-13	24 0.5	474
242	Biological adhesion for locomotion: basic principles. <i>Journal of Adhesion Science and Technology</i> , 2007 , 21, 1145-1173	2	56
241	Theory of Noncontact Friction. <i>Nanoscience and Technology</i> , 2007 , 393-438	0.6	
240	A Multiscale Molecular Dynamics Approach to Contact Mechanics and Friction: From Continuum Mechanics to Molecular Dynamics. <i>Nanoscience and Technology</i> , 2007 , 307-343	0.6	1
239	Contact Mechanics, Friction and Adhesion with Application to Quasicrystals. <i>Nanoscience and Technology</i> , 2007 , 269-306	0.6	2
238	Role of surface roughness in superlubricity. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 4143-60	1.8	21
237	How do liquids confined at the nanoscale influence adhesion?. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 11521-11530	1.8	6
236	Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity. <i>Journal of Chemical Physics</i> , 2006 , 125, 014704	3.9	30
235	Rubber friction: role of the flash temperature. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 7789-823	1.8	130
234	Chemical contribution to surface-enhanced Raman scattering. <i>Physical Review Letters</i> , 2006 , 96, 207401	7.4	156
233	Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. <i>Physical Review B</i> , 2006 , 73,	3.3	24
232	Persson, Zhao, and Zhang Reply:. <i>Physical Review Letters</i> , 2006 , 97,	7.4	2
231	Quantum field theory of van der Waals friction. <i>Physical Review B</i> , 2006 , 74,	3.3	27
230	A multiscale molecular dynamics approach to contact mechanics. <i>European Physical Journal E</i> , 2006 , 19, 47-58	1.5	97
229	Influence of surface roughness on superhydrophobicity. <i>Physical Review Letters</i> , 2006 , 97, 116103	7.4	226

228	Contact mechanics for randomly rough surfaces. Surface Science Reports, 2006, 61, 201-227	12.9	477
227	Rubber friction on smooth surfaces. <i>European Physical Journal E</i> , 2006 , 21, 69-80	1.5	84
226	Hot cracks in rubber: origin of the giant toughness of rubberlike materials. <i>Physical Review Letters</i> , 2005 , 95, 114301	7.4	38
225	On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, R1-R62	1.8	613
224	Crack propagation in rubber-like materials. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, R1071-R1142	2 1.8	178
223	Adsorbate vibrational mode enhancement of radiative heat transfer and van der Waals friction. <i>Surface Science</i> , 2005 , 587, 88-101	1.8	4
222	Crack motion in viscoelastic solids: the role of the flash temperature. <i>European Physical Journal E</i> , 2005 , 17, 261-81	1.5	51
221	Rubber friction on wet and dry road surfaces: The sealing effect. <i>Physical Review B</i> , 2005 , 71,	3.3	74
220	Adsorbate motions induced by inelastic-tunneling current: theoretical scenarios of two-electron processes. <i>Journal of Chemical Physics</i> , 2005 , 123, 084707	3.9	45
219	Adsorbate-induced enhancement of electrostatic noncontact friction. <i>Physical Review Letters</i> , 2005 , 94, 086104	7.4	50
218	Influence of surface roughness on adhesion between elastic bodies. <i>Physical Review Letters</i> , 2005 , 95, 124301	7.4	95
217	Crack propagation in viscoelastic solids. <i>Physical Review E</i> , 2005 , 71, 036123	2.4	156
216	Contact area between a viscoelastic solid and a hard, randomly rough, substrate. <i>Journal of Chemical Physics</i> , 2004 , 120, 8779-93	3.9	105
215	Squeezing wetting and nonwetting liquids. <i>Journal of Chemical Physics</i> , 2004 , 120, 1997-2004	3.9	8
214	The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant. <i>Journal of Chemical Physics</i> , 2004 , 121, 9639-47	3.9	17
213	Dewetting at soft viscoelastic interfaces. <i>Journal of Chemical Physics</i> , 2004 , 121, 2246-52	3.9	23
212	Adhesion between a thin elastic plate and a hard randomly rough substrate. <i>Physical Review B</i> , 2004 , 70,	3.3	47
211	Squeeze-out and wear: fundamental principles and applications. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, R295-R355	1.8	71

210	Sealing is at the origin of rubber slipping on wet roads. <i>Nature Materials</i> , 2004 , 3, 882-5	27	35
209	Squeezing Molecularly Thin Alkane Lubrication Films: Layering Transitions and Wear. <i>Tribology Letters</i> , 2004 , 16, 195-200	2.8	3
208	Theoretical state-of-the art in adsorbate motions and reactions induced by inelastic tunneling current with STM. <i>Surface Science</i> , 2004 , 566-568, 1-12	1.8	27
207	Electronic friction and liquid-flow-induced voltage in nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	69
206	Resonant photon tunneling enhancement of the radiative heat transfer. <i>Physical Review B</i> , 2004 , 69,	3.3	97
205	Dimethyl Ether: New Advances in Wear Testing: Theoretical and Experimental Results 2003,		1
204	Role of the external pressure on the dewetting of soft interfaces. <i>European Physical Journal E</i> , 2003 , 11, 409-13	1.5	28
203	On the nature of the static friction, kinetic friction and creep. Wear, 2003, 254, 835-851	3.5	94
202	Adsorbate vibrational mode enhancement of radiative heat transfer. <i>JETP Letters</i> , 2003 , 78, 457-460	1.2	15
201	Nanoadhesion. <i>Wear</i> , 2003 , 254, 832-834	3.5	45
201	Nanoadhesion. Wear, 2003, 254, 832-834 The effect of surface roughness on the adhesion of elastic plates with application to biological systems. Journal of Chemical Physics, 2003, 119, 11437-11444	3.5	45 327
	The effect of surface roughness on the adhesion of elastic plates with application to biological		
200	The effect of surface roughness on the adhesion of elastic plates with application to biological systems. <i>Journal of Chemical Physics</i> , 2003 , 119, 11437-11444	3.9	327
200	The effect of surface roughness on the adhesion of elastic plates with application to biological systems. <i>Journal of Chemical Physics</i> , 2003 , 119, 11437-11444 Noncontact friction between nanostructures. <i>Physical Review B</i> , 2003 , 68,	3·9 3·3 3·9	3 ² 7
200 199 198	The effect of surface roughness on the adhesion of elastic plates with application to biological systems. <i>Journal of Chemical Physics</i> , 2003 , 119, 11437-11444 Noncontact friction between nanostructures. <i>Physical Review B</i> , 2003 , 68, On the mechanism of adhesion in biological systems. <i>Journal of Chemical Physics</i> , 2003 , 118, 7614	3·9 3·3 3·9	327 56 281
200 199 198	The effect of surface roughness on the adhesion of elastic plates with application to biological systems. <i>Journal of Chemical Physics</i> , 2003 , 119, 11437-11444 Noncontact friction between nanostructures. <i>Physical Review B</i> , 2003 , 68, On the mechanism of adhesion in biological systems. <i>Journal of Chemical Physics</i> , 2003 , 118, 7614 Dynamics of squeeze-out: Theory and experiments. <i>Journal of Chemical Physics</i> , 2003 , 118, 11160-1116 Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range	3.9 3.3 3.9 7 _{3.9}	327 56 281
200 199 198 197	The effect of surface roughness on the adhesion of elastic plates with application to biological systems. <i>Journal of Chemical Physics</i> , 2003 , 119, 11437-11444 Noncontact friction between nanostructures. <i>Physical Review B</i> , 2003 , 68, On the mechanism of adhesion in biological systems. <i>Journal of Chemical Physics</i> , 2003 , 118, 7614 Dynamics of squeeze-out: Theory and experiments. <i>Journal of Chemical Physics</i> , 2003 , 118, 11160-1116 Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear. <i>Journal of Chemical Physics</i> , 2003 , 119, 2314-2321 Nanoadhesion of elastic bodies: Roughness and temperature effects. <i>Journal of Chemical Physics</i> ,	3.9 3.3 3.9 7 _{3.9}	327 56 281 10

192	Adhesion between an elastic body and a randomly rough hard surface. <i>European Physical Journal E</i> , 2002 , 8, 385-401	1.5	166
191	Phenomenology of squeezing and sliding of molecularly thin Xe, CH4 and C16H34 lubrication films between smooth and rough curved solid surfaces with long-range elasticity. <i>Journal of Chemical Physics</i> , 2002 , 117, 3897-3914	3.9	24
190	Theory of rubber friction: Nonstationary sliding. <i>Physical Review B</i> , 2002 , 65,	3.3	23
189	Adhesion between elastic bodies with randomly rough surfaces. <i>Physical Review Letters</i> , 2002 , 89, 2455	024	74
188	Comment on "Nanoadhesion between rough surfaces". <i>Physical Review Letters</i> , 2002 , 88, 129601	7.4	3
187	Boundary lubrication: Squeeze-out dynamics of a compressible two-dimensional liquid. <i>Physical Review B</i> , 2002 , 66,	3.3	5
186	Dissipative van der Waals interaction between a small particle and a metal surface. <i>Physical Review B</i> , 2002 , 65,	3.3	65
185	Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. <i>Physical Review B</i> , 2002 , 65,	3.3	164
184	Theory of inelastic tunneling induced motion of adsorbates on metal surfaces. <i>Surface Science</i> , 2002 , 502-503, 18-25	1.8	58
183	Lateral hopping of molecules induced by excitation of internal vibration mode. <i>Science</i> , 2002 , 295, 2055	5 -§ 3.3	317
182	The frictional drag force between quantum wells mediated by a fluctuating electromagnetic field. Journal of Physics Condensed Matter, 2001 , 13, 859-873	1.8	26
181	Theory and simulations of squeeze-out dynamics in boundary lubrication. <i>Journal of Chemical Physics</i> , 2001 , 115, 11268-11277	3.9	10
180	The effect of surface roughness on the adhesion of elastic solids. <i>Journal of Chemical Physics</i> , 2001 , 115, 5597-5610	3.9	224
179	Elastic instabilities at a sliding interface. <i>Physical Review B</i> , 2001 , 63,	3.3	16
178	Theory of rubber friction and contact mechanics. <i>Journal of Chemical Physics</i> , 2001 , 115, 3840-3861	3.9	932
177	Radiative heat transfer between nanostructures. <i>Physical Review B</i> , 2001 , 63,	3.3	194
176	Elastoplastic contact between randomly rough surfaces. <i>Physical Review Letters</i> , 2001 , 87, 116101	7.4	250
175	Boundary lubrication: dynamics of squeeze-out. <i>Physical Review E</i> , 2001 , 63, 055103	2.4	20

(2000-2000)

174	Thermodynamics and Kinetics of Shear Induced Melting of a thin Lubrication film Trapped between Solids. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 651, 1		1
173	Layering transition: dynamical instabilities during squeeze-out. Chemical Physics Letters, 2000, 324, 231-	239 ⁹	10
172	On the origin of the transition from slip to stick. Solid State Communications, 2000, 114, 261-266	1.6	15
171	Electronic friction on a superconductor surface. Solid State Communications, 2000, 115, 145-148	1.6	17
170	Boundary lubrication: layering transition for curved solid surfaces with long-range elasticity. <i>Solid State Communications</i> , 2000 , 115, 599-604	1.6	11
169	Qualitative theory of rubber friction and wear. <i>Journal of Chemical Physics</i> , 2000 , 112, 2021-2029	3.9	46
168	Femtosecond surface vibrational spectroscopy of CO adsorbed on Ru(001) during desorption. <i>Physical Review Letters</i> , 2000 , 84, 4653-6	7.4	158
167	Comment on "Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields". <i>Physical Review Letters</i> , 2000 , 84, 3504	7.4	40
166	Squeezing lubrication films: Layering transition for curved solid surfaces with long-range elasticity. Journal of Chemical Physics, 2000 , 112, 9524-9542	3.9	43
165	Sliding Friction. Nanoscience and Technology, 2000,	0.6	631
164	Dynamical interactions in sliding friction. <i>Surface Science</i> , 2000 , 457, 345-356	1.8	9
163	Friction dynamics for curved solid surfaces with long-range elasticity. <i>Journal of Chemical Physics</i> , 2000 , 113, 5477	3.9	8
162	Theory of time-dependent plastic deformation in disordered solids. <i>Physical Review B</i> , 2000 , 61, 5949-59	96.6	25
161	Sliding of Adsorbate Layers. <i>Nanoscience and Technology</i> , 2000 , 171-311	0.6	
160	Novel Sliding Systems. <i>Nanoscience and Technology</i> , 2000 , 435-496	0.6	
159	Elastic Interactions and Instability Transitions. <i>Nanoscience and Technology</i> , 2000 , 335-362	0.6	
158	Modern Experimental Methods and Results. <i>Nanoscience and Technology</i> , 2000 , 17-36	0.6	
157	Stress Domains, Relaxation, and Creep. <i>Nanoscience and Technology</i> , 2000 , 363-393	0.6	2

156	Lubricated Friction Dynamics. <i>Nanoscience and Technology</i> , 2000 , 395-413	0.6	1
155	Area of Real Contact: Elastic and Plastic Deformations. <i>Nanoscience and Technology</i> , 2000 , 45-91	0.6	4
154	Sliding on Lubricated Surfaces. <i>Nanoscience and Technology</i> , 2000 , 101-170	0.6	4
153	Boundary Lubrication. <i>Nanoscience and Technology</i> , 2000 , 313-334	0.6	1
152	Low-frequency adsorbate vibrational relaxation and sliding friction. <i>Physical Review B</i> , 1999 , 59, 11777-	13.391	53
151	Theory of friction: elastic coherence length and earthquake dynamics. <i>Solid State Communications</i> , 1999 , 109, 739-744	1.6	30
150	Sliding friction. Surface Science Reports, 1999 , 33, 83-119	12.9	137
149	Theory of friction: the contribution from a fluctuating electromagnetic field. <i>Journal of Physics Condensed Matter</i> , 1999 , 11, 345-359	1.8	84
148	Fracture of polymers. <i>Journal of Chemical Physics</i> , 1999 , 110, 9713-9724	3.9	15
147	Friction of molecules at metallic surfaces: experimental approach using synchrotron infrared spectroscopy. <i>Surface Science</i> , 1999 , 433-435, 797-805	1.8	17
146	Adsorption of potassium and oxygen on graphite: A theoretical study. <i>Journal of Chemical Physics</i> , 1998 , 108, 3332-3341	3.9	121
145	On the theory of rubber friction. Surface Science, 1998 , 401, 445-454	1.8	174
144	The puzzling collapse of electronic sliding friction on a superconductor surface. <i>Surface Science</i> , 1998 , 411, L855-L857	1.8	24
143	Infrared spectroscopy of overtones and combination bands. <i>Journal of Chemical Physics</i> , 1998 , 109, 864	1 ₃ 8651	71
142	On the role of inertia and temperature in continuum and atomistic models of brittle fracture. Journal of Physics Condensed Matter, 1998 , 10, 10529-10538	1.8	6
141	Theory of friction: Coulomb drag between two closely spaced solids. <i>Physical Review B</i> , 1998 , 57, 7327-7	7334	43
140	Model Study of Brittle Fracture of Polymers. <i>Physical Review Letters</i> , 1998 , 81, 3439-3442	7.4	15
139	Sliding Friction. Nanoscience and Technology, 1998,	0.6	414

138	Novel Sliding Systems. <i>Nanoscience and Technology</i> , 1998 , 387-444	0.6	1
137	Sliding on Lubricated Surfaces. <i>Nanoscience and Technology</i> , 1998 , 97-154	0.6	2
136	Stress Domains, Relaxation, and Creep. <i>Nanoscience and Technology</i> , 1998 , 315-345	0.6	
135	Sliding of Adsorbate Layers. <i>Nanoscience and Technology</i> , 1998 , 155-268	0.6	
134	Modern Experimental Methods and Results. <i>Nanoscience and Technology</i> , 1998 , 17-35	0.6	
133	Lubricated Friction Dynamics. <i>Nanoscience and Technology</i> , 1998 , 347-365	0.6	
132	Elastic Interactions and Instability Transitions. <i>Nanoscience and Technology</i> , 1998 , 289-313	0.6	
131	Boundary Lubrication. <i>Nanoscience and Technology</i> , 1998 , 269-288	0.6	
130	Sliding friction: the contribution from defects. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 2869-2889	1.8	9
129	Probing the Surface Brillouin Zone by Infrared Absorption Spectroscopy: Asymmetric Line Shape of Vibrational Combination Band. <i>Physical Review Letters</i> , 1997 , 78, 3503-3506	7.4	21
128	Theory of friction:mFriction dynamics for boundary lubricated surfaces. <i>Physical Review B</i> , 1997 , 55, 800) 4,. §00	434
127	Dephasing of localized and delocalized vibrational modes: CO adsorbed on Ru(001). <i>Physical Review B</i> , 1997 , 56, 10644-10650	3.3	56
126	Local bond breaking via STM-induced excitations: the role of temperature. <i>Surface Science</i> , 1997 , 390, 45-54	1.8	110
125	Theory of Friction: Friction Dynamics for Boundary Lubricated Surfaces 1997 , 555-577		2
124	Linear sliding friction: on the origin of the microscopic friction for Xe on silver. <i>Surface Science</i> , 1996 , 367, 261-275	1.8	71
123	Theory of friction: on the origin of the stick-slip motion of lubricated surfaces. <i>Chemical Physics Letters</i> , 1996 , 254, 114-121	2.5	17
122	Theory of Friction: Elastic Coherence Length and Earthquake Dynamics 1996 , 179-189		5
121	Sliding Friction of Lubricated Surfaces 1996 , 69-91		3

120 Electronic and phononic friction **1996**, 253-264

119	Electronic friction of physisorbed molecules. <i>Journal of Chemical Physics</i> , 1995 , 103, 8679-8683	3.9	74
118	Theory of friction: Dynamical phase transitions in adsorbed layers. <i>Journal of Chemical Physics</i> , 1995 , 103, 3849-3860	3.9	54
117	Quantum theory of infrared-reflection spectroscopy from adsorbate-covered metal surfaces in the anomalous-skin-effect frequency region. <i>Physical Review B</i> , 1995 , 52, 2899-2906	3.3	29
116	Theory of friction: Stress domains, relaxation, and creep. <i>Physical Review B</i> , 1995 , 51, 13568-13585	3.3	111
115	The effects of the electric field in the STM on excitation localization. Implications for local bond breaking. <i>Chemical Physics Letters</i> , 1995 , 242, 483-489	2.5	41
114	Dynamics of atomic adsorbates: hydrogen on Cu(111). <i>Chemical Physics Letters</i> , 1995 , 243, 429-434	2.5	48
113	Theory of friction: The role of elasticity in boundary lubrication. <i>Physical Review B</i> , 1994 , 50, 4771-4786	3.3	92
112	Antiabsorption resonances in infrared reflectance spectroscopy of alkali-Cu(111) adsorbate systems: Is the ground state a surface charge density wave condensate?. <i>Physical Review Letters</i> , 1994 , 72, 1256-1259	7.4	24
111	Layering transition in confined molecular thin films: Nucleation and growth. <i>Physical Review B</i> , 1994 , 50, 5590-5599	3.3	95
110	Adsorbate vibrational dynamics in the anomalous skin effect frequency region. <i>Surface Science</i> , 1994 , 317, L1141-L1146	1.8	36
109	What can high-resolution electron energy loss spectroscopy tell about pre-melting of semiconductor surfaces at high temperatures?. <i>Surface Science</i> , 1994 , 312, 198-200	1.8	
108	Infrared reflection-absorption spectroscopy of dipole-forbidden adsorbate vibrations. <i>Surface Science</i> , 1994 , 310, 314-336	1.8	77
107	High temperature surface metallization of Ge(111) detected by electron energy loss spectroscopy. <i>Physical Review Letters</i> , 1994 , 73, 1951-1954	7.4	54
106	Polarizability of small spherical metal particles: influence of the matrix environment. <i>Surface Science</i> , 1993 , 281, 153-162	1.8	270
105	Theory and simulation of sliding friction. <i>Physical Review Letters</i> , 1993 , 71, 1212-1215	7.4	107
104	Theory of friction and boundary lubrication. <i>Physical Review B</i> , 1993 , 48, 18140-18158	3.3	90
103	Applications of surface resistivity to atomic scale friction, to the migration of fl ot la datoms, and to electrochemistry. <i>Journal of Chemical Physics</i> , 1993 , 98, 1659-1672	3.9	81

(1990-1993)

102	Reply to "Comment on 'Surface resistivity and vibrational damping in adsorbed layers' ". <i>Physical Review B</i> , 1993 , 48, 15471	3.3	8
101	FTIR overtone spectroscopy on surfaces. The CD mode in chemisorbed methoxy on Ni(111). <i>Chemical Physics Letters</i> , 1993 , 208, 414-419	2.5	44
100	Infrared reflection-absorption spectroscopy of dipole forbidden adsorbate vibrations. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1993 , 64-65, 23-38	1.7	11
99	On the theory of friction and boundary lubrication. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1993 , 64-65, 403-412	1.7	7
98	Surface Resistivity and Atomic Scale Friction 1993 , 21-41		
97	Theory of photon emission in electron tunneling to metallic particles. <i>Physical Review Letters</i> , 1992 , 68, 3224-3227	7.4	172
96	Application of a boson Hubbard model to vibrational dynamics in adsorbate layers. <i>Physical Review B</i> , 1992 , 46, 12701-12716	3.3	31
95	Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4. <i>Surface Science</i> , 1992 , 264, 327-340	1.8	31
94	Surface resistivity: theory and applications. Surface Science, 1992, 269-270, 103-112	1.8	51
93	Ordered structures and phase transitions in adsorbed layers. Surface Science Reports, 1992, 15, 1-135	12.9	180
92	Adsorbate-induced surface resistivity and nonlocal optics. Chemical Physics Letters, 1992, 197, 7-11	2.5	29
		Ĭ	
91	On the origin of anti-absorption resonances in adsorbate vibrational spectroscopy. <i>Chemical Physics Letters</i> , 1991 , 185, 292-297	2.5	34
91 90			34 58
	Letters, 1991 , 185, 292-297		
90	Letters, 1991, 185, 292-297 Surface resistivity and vibrational damping in adsorbed layers. Chemical Physics Letters, 1991, 178, 204-2 Cubic anharmonicity and multiphonon vibrational relaxation of absorbed molecules. Chemical	2125	58
90 89	Letters, 1991, 185, 292-297 Surface resistivity and vibrational damping in adsorbed layers. <i>Chemical Physics Letters</i> , 1991, 178, 204-204. Cubic anharmonicity and multiphonon vibrational relaxation of absorbed molecules. <i>Chemical Physics Letters</i> , 1991, 184, 301-304	2 12 ; 2.5	58 4
90 89 88	Surface resistivity and vibrational damping in adsorbed layers. <i>Chemical Physics Letters</i> , 1991 , 178, 204-205. Cubic anharmonicity and multiphonon vibrational relaxation of absorbed molecules. <i>Chemical Physics Letters</i> , 1991 , 184, 301-304. Surface resistivity and vibrational damping in adsorbed layers. <i>Physical Review B</i> , 1991 , 44, 3277-3296.	2 12 ; 2.5	58 4 248

84	Surface and superconducting properties of cleaved high-temperature superconductors. <i>Physical Review Letters</i> , 1990 , 64, 603-606	7.4	78
83	High-resolution electron-energy-loss study of the surfaces and energy gaps of cleaved high-temperature superconductors. <i>Physical Review B</i> , 1990 , 42, 8057-8072	3.3	48
82	On the nature of dense CO adlayers. <i>Journal of Chemical Physics</i> , 1990 , 92, 5034-5046	3.9	142
81	Depolarization and metallization in alkali-metal overlayers. <i>Physical Review B</i> , 1990 , 42, 3171-3174	3.3	57
80	Work function, optical absorption, and second-harmonic generation from alkali-metal atoms adsorbed on metal surfaces. <i>Physical Review B</i> , 1989 , 39, 8220-8235	3.3	56
79	Vibrational line shapes of low-frequency adsorbate modes: CO on Pt(111). <i>Physical Review B</i> , 1989 , 40, 10273-10281	3.3	89
78	Inelastic scattering of electrons from accumulation and inversion layers. <i>Physical Review B</i> , 1989 , 40, 7819-7824	3.3	6
77	Monte-Carlo calculations of adsorbate structures. <i>Solid State Communications</i> , 1989 , 70, 211-214	1.6	17
76	On the role of the vibrational entropy in phase transitions at surfaces. <i>Solid State Communications</i> , 1989 , 70, 215-218	1.6	5
75	The potential energy surface, vibrational phase relaxation and the order-disorder transition in the adsorption system Pt{111}-CO. <i>Surface Science</i> , 1989 , 213, 49-89	1.8	289
74	Monte Carlo calculations of adsorbate structures and the role of the vibrational entropy in phase transitions at surfaces. <i>Physical Review B</i> , 1989 , 40, 7115-7123	3.3	30
73	Vibrational lineshapes for NO on Ni(111). Surface Science, 1989 , 218, 494-506	1.8	45
72	On the nature of the frustrated translations for CO on metal surfaces. <i>Chemical Physics Letters</i> , 1988 , 149, 278-283	2.5	25
71	Self-consistent dynamic image potential in tunneling. <i>Physical Review B</i> , 1988 , 38, 9616-9627	3.3	86
70	Vibrational phase relaxation at surfaces: The role of lateral interaction. <i>Journal of Chemical Physics</i> , 1988 , 88, 3349-3352	3.9	16
69	Inelastic vacuum tunneling. <i>Physica Scripta</i> , 1988 , 38, 282-290	2.6	58
68	Theory of the local tunneling spectrum of a vibrating adsorbate. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1988 , 6, 331-335	2.9	54
67	Dynamic polarizability of small metal particles. <i>Physical Review B</i> , 1987 , 35, 596-606	3.3	57

66	Electron-energy-loss study of the space-charge region at semiconductor surfaces. <i>Physical Review B</i> , 1987 , 35, 9128-9134	3.3	30
65	Inelastic electron tunneling from a metal tip: The contribution from resonant processes. <i>Physical Review Letters</i> , 1987 , 59, 339-342	7.4	289
64	Vibrational energy relaxation at surfaces: O2 chemisorbed on Pt(111). <i>Chemical Physics Letters</i> , 1987 , 139, 457-462	2.5	32
63	The atomic force microscope: Can it be used to study biological molecules?. <i>Chemical Physics Letters</i> , 1987 , 141, 366-368	2.5	64
62	Vibrational phase relaxation at surfaces: The role of lateral interaction. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1987 , 45, 215-225	1.7	33
61	Optical absorption and exciton motion in the photosynthetic unit. <i>Chemical Physics Letters</i> , 1986 , 128, 107-112	2.5	8
60	On the nature of low-frequency vibrational modes in globular protein molecules immersed in water. <i>Chemical Physics Letters</i> , 1986 , 127, 428-431	2.5	8
59	Vibrational phase relaxation at surfaces. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1986 , 39, 79-82	1.7	
58	Inelastic electron scattering from ultrathin metallic films on Si(111). <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1986 , 39, 83-88	1.7	O
57	Inelastic electron tunnelling from a metal tip. <i>Solid State Communications</i> , 1986 , 57, 769-772	1.6	104
57 56	Inelastic electron tunnelling from a metal tip. <i>Solid State Communications</i> , 1986 , 57, 769-772 Electronic conductivity of Si(111)-7 x 7. <i>Physical Review B</i> , 1986 , 34, 5916-5917	1.6 3·3	104
56	Electronic conductivity of Si(111)-7 x 7. <i>Physical Review B</i> , 1986 , 34, 5916-5917	3.3	15
56 55	Electronic conductivity of Si(111)-7 x 7. <i>Physical Review B</i> , 1986 , 34, 5916-5917 Vibrational dephasing of terminally bonded CO on Ru(001). <i>Physical Review B</i> , 1986 , 34, 4354-4357 Influence of exciton motion on the shape of optical absorption lines: Applications to vibrations at	3.3	15 37
56 55 54	Electronic conductivity of Si(111)-7 x 7. <i>Physical Review B</i> , 1986 , 34, 5916-5917 Vibrational dephasing of terminally bonded CO on Ru(001). <i>Physical Review B</i> , 1986 , 34, 4354-4357 Influence of exciton motion on the shape of optical absorption lines: Applications to vibrations at surfaces. <i>Physical Review B</i> , 1986 , 34, 2266-2283	3·3 3·3	15 37 154
56 55 54 53	Electronic conductivity of Si(111)-7 x 7. <i>Physical Review B</i> , 1986 , 34, 5916-5917 Vibrational dephasing of terminally bonded CO on Ru(001). <i>Physical Review B</i> , 1986 , 34, 4354-4357 Influence of exciton motion on the shape of optical absorption lines: Applications to vibrations at surfaces. <i>Physical Review B</i> , 1986 , 34, 2266-2283 Optical properties of orientationally disordered systems. <i>Physical Review B</i> , 1986 , 34, 8941-8943 Cluster study of the interaction of a Co molecule with an aluminium surface. <i>Surface Science</i> , 1986 ,	3.3 3.3 3.3	15 37 154
56 55 54 53 52	Electronic conductivity of Si(111)-7 x 7. <i>Physical Review B</i> , 1986 , 34, 5916-5917 Vibrational dephasing of terminally bonded CO on Ru(001). <i>Physical Review B</i> , 1986 , 34, 4354-4357 Influence of exciton motion on the shape of optical absorption lines: Applications to vibrations at surfaces. <i>Physical Review B</i> , 1986 , 34, 2266-2283 Optical properties of orientationally disordered systems. <i>Physical Review B</i> , 1986 , 34, 8941-8943 Cluster study of the interaction of a Co molecule with an aluminium surface. <i>Surface Science</i> , 1986 , 171, 219-225	3.3 3.3 3.3	15 37 154

48	Novel microstructure and surface conductivity of ultra-thin metallic films on Si(111). <i>Solid State Communications</i> , 1985 , 54, 425-428	1.6	5
47	Determination of the surface conductivity of ultrathin metallic films on Si(111) by high-resolution electron-energy-loss spectroscopy. <i>Physical Review Letters</i> , 1985 , 54, 584-587	7.4	22
46	Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111). <i>Physical Review B</i> , 1985 , 32, 3586-3596	3.3	240
45	Vibrational dephasing by the exchange mechanism: Some new results. <i>Journal of Chemical Physics</i> , 1985 , 83, 5610-5618	3.9	32
44	Electron-hole pair production at metal surfaces. <i>Physical Review B</i> , 1985 , 31, 1863-1872	3.3	137
43	Vibrational phase relaxation at surfaces: CO on Ni(111). <i>Physical Review Letters</i> , 1985 , 54, 2119-2122	7.4	152
42	Quasielastic peak in electron scattering from metallic surfaces. <i>Physical Review Letters</i> , 1985 , 55, 2957-2	2 9 5 ₁ 9	5
41	Determination of the frequency-dependent resistivity of ultrathin metallic films on Si(111). <i>Physical Review B</i> , 1985 , 31, 1856-1862	3.3	26
40	High resolution electron energy loss studies of Fermi level states of clean and metallized Si(111) surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1984, 2, 384		16
39	Vibrational energy and phase relaxation at surfaces. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 4741-4750		92
38	Long-Range Electron-Phonon Coupling at Metal Surfaces. <i>Physical Review Letters</i> , 1984 , 52, 2073-2076	7.4	42
37	Dynamical processes at surfaces: Excitation of electron-hole pairs. <i>Physical Review B</i> , 1984 , 29, 4382-439	9 4 .3	84
36	Inelastic electron scattering from thin metal films. Solid State Communications, 1984, 52, 811-813	1.6	23
35	Reference-plane position for the atom-surface van der Waals interaction. <i>Physical Review B</i> , 1984 , 30, 5669-5679	3.3	114
34	Inelastic scattering of slow electrons from Si(111) surfaces. <i>Physical Review B</i> , 1984 , 30, 5968-5986	3.3	149
33	Excited states at metal surfaces and their non-radiative relaxation. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 837-848		205
32	Dynamical Processes at Surfaces: Excitation of Electron-Hole Pairs and Phonons. <i>Jerusalem Symposia on Quantum Chemistry and Biochemistry</i> , 1984 , 257-269		
31	Lateral interactions and vibrational lifetimes. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1983 , 29, 43-57	1.7	18

(1980-1983)

30	Optical properties of two-dimensional systems of randomly distributed particles. <i>Physical Review B</i> , 1983 , 28, 4247-4254	3.3	113
29	Optical properties of small metallic particles in a continuous dielectric medium. <i>Journal of Physics C: Solid State Physics</i> , 1983 , 16, 5375-5391		75
28	Relation between Dynamical Processes at Surfaces and Electron-Energy-Loss Measurements. <i>Physical Review Letters</i> , 1983 , 50, 1089-1091	7.4	47
27	Long-Range Scattering of Electrons by Electron-Hole Pair Excitations at Metal Surfaces. <i>Physical Review Letters</i> , 1983 , 50, 2028-2031	7.4	42
26	Temperature-Dependent Surface States and Transitions of Si(111)-7\overline{\mathbb{I}}. <i>Physical Review Letters</i> , 1983 , 51, 2214-2217	7.4	150
25	Sum rules for surface response functions with application to the van der Waals interaction between an atom and a metal. <i>Physical Review B</i> , 1983 , 27, 6058-6065	3.3	69
24	On the nature and decay of electronically excited states at metal surfaces. <i>Journal of Chemical Physics</i> , 1983 , 79, 5156-5162	3.9	30
23	Lateral Interactions and Vibrational Lifetimes. Studies in Surface Science and Catalysis, 1983, 43-57	1.8	
22	Vibrational Damping of Adsorbed Molecules: Methoxide on Cu(100). <i>Physical Review Letters</i> , 1982 , 48, 549-552	7.4	88
21	Indirect vibrational coupling between adsorbed molecules. Surface Science, 1982, 116, 585-595	1.8	22
20	Electron-hole-pair quenching of excited states near a metal. <i>Physical Review B</i> , 1982 , 26, 5409-5415	3.3	296
19			/
	Optical properties of inhomogeneous media. <i>Solid State Communications</i> , 1982 , 44, 1637-1640	1.6	61
18	Optical properties of inhomogeneous media. <i>Solid State Communications</i> , 1982 , 44, 1637-1640 Vibrational Lifetimes for Molecules Adsorbed on Metal Surfaces 1982 , 113-122	1.6	61
18		3.3	61 509
	Vibrational Lifetimes for Molecules Adsorbed on Metal Surfaces 1982 , 113-122 Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole		
17	Vibrational Lifetimes for Molecules Adsorbed on Metal Surfaces 1982 , 113-122 Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction. <i>Physical Review B</i> , 1981 , 24, 6954-6970 Collective vibrational modes of isotopic mixtures of CO on Cu(111) and Cu(001). <i>Surface Science</i> ,	3.3	509
17 16	Vibrational Lifetimes for Molecules Adsorbed on Metal Surfaces 1982, 113-122 Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction. <i>Physical Review B</i> , 1981, 24, 6954-6970 Collective vibrational modes of isotopic mixtures of CO on Cu(111) and Cu(001). <i>Surface Science</i> , 1981, 110, 356-368 Electronic damping of a vibrating dipole near a metal. <i>Journal of Physics C: Solid State Physics</i> , 1981,	3.3	509 79

12	On the Debye-Waller factor in molecular beam scattering experiments. <i>Solid State Communications</i> , 1980 , 36, 271-273	1.6	4
11	Vibrational excitation cross-sections for adsorbed CO. <i>Solid State Communications</i> , 1980 , 34, 473-476	1.6	45
10	Vibrational lifetime for CO adsorbed on Cu(100). Solid State Communications, 1980, 36, 175-179	1.6	328
9	On the mathematical structure of the Lindhard dielectric tensor. <i>Journal of Physics C: Solid State Physics</i> , 1980 , 13, 435-439		7
8	Inelastic Electron Scattering by a Collective Vibrational Mode of Adsorbed CO. <i>Physical Review Letters</i> , 1980 , 45, 1421-1424	7.4	94
7	Inelastic scattering of slow electrons from adsorbed molecules. Surface Science, 1980, 92, 265-282	1.8	70
6	Inelastic scattering of slow electrons from adsorbed CO. Surface Science, 1980, 99, 283-288	1.8	14
5	Damping of vibrations in molecules adsorbed on a metal surface. <i>Surface Science</i> , 1980 , 97, 609-624	1.8	113
4	Absorption of photons by molecules adsorbed on metal surfaces. <i>Solid State Communications</i> , 1979 , 30, 163-166	1.6	46
3	Damping of excited molecules located above a metal surface. <i>Solid State Communications</i> , 1978 , 27, 41	7-481	21
2	Theory of the damping of excited molecules located above a metal surface. <i>Journal of Physics C:</i> Solid State Physics, 1978 , 11, 4251-4269		126
1	Theory of inelastic scattering of slow electrons by molecules absorbed on metal surfaces. <i>Solid State Communications</i> , 1977 , 24, 573-575	1.6	77