Beverly A Teicher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916199/publications.pdf

Version: 2024-02-01

		126858	1	68321
53	6,813	33		53
papers	citations	h-index		g-index
57	57	57		11713
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Tumor Heterogeneity Research and Innovation in Biologically Based Radiation Therapy From the National Cancer Institute Radiation Research Program Portfolio. Journal of Clinical Oncology, 2022, 40, 1861-1869.	0.8	1
2	TGFÎ ² -Directed Therapeutics: 2020. , 2021, 217, 107666.		52
3	Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clinical Epigenetics, 2021, 13, 49.	1.8	14
4	SMAC Mimetic/IAP Inhibitor Birinapant Enhances Radiosensitivity of Glioblastoma Multiforme. Radiation Research, 2021, 195, 549-560.	0.7	4
5	Format (2D vs 3D) and media effect target expression and response of patient-derived and standard NSCLC lines to EGFR inhibitors. Cancer Treatment and Research Communications, 2021, 29, 100463.	0.7	2
6	Immuno-transcriptomic profiling of extracranial pediatric solid malignancies. Cell Reports, 2021, 37, 110047.	2.9	26
7	SCLC-CellMiner: A Resource for Small Cell Lung Cancer Cell Line Genomics and Pharmacology Based on Genomic Signatures. Cell Reports, 2020, 33, 108296.	2.9	86
8	Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets. Clinical Epigenetics, 2020, 12, 93.	1.8	38
9	Are neuroendocrine negative small cell lung cancer and large cell neuroendocrine carcinoma with WT RB1 two faces of the same entity?. Lung Cancer Management, 2019, 8, LMT13.	1.5	25
10	CD248: A therapeutic target in cancer and fibrotic diseases. Oncotarget, 2019, 10, 993-1009.	0.8	44
11	Exposure time versus cytotoxicity for anticancer agents. Cancer Chemotherapy and Pharmacology, 2019, 84, 359-371.	1.1	13
12	Antibody Drug and Radionuclide Conjugates for GI Cancers. , 2017, , 79-99.		1
13	3D Models of the NCI60 Cell Lines for Screening Oncology Compounds. SLAS Discovery, 2017, 22, 473-483.	1.4	48
14	Small cell lung carcinoma cell line screen of etoposide/carboplatin plus a third agent. Cancer Medicine, 2017, 6, 1952-1964.	1.3	13
15	PARP Inhibitor Activity Correlates with <i>SLFN11</i> Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clinical Cancer Research, 2017, 23, 523-535.	3.2	252
16	Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression. Journal of the National Cancer Institute, 2016, 108, djw122.	3.0	129
17	Antibody–drug conjugates for cancer therapy. Lancet Oncology, The, 2016, 17, e254-e262.	5.1	439
18	Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer Letters, 2016, 371, 225-239.	3.2	41

#	Article	IF	CITATIONS
19	Perspectives from man's best friend: National Academy of Medicine's Workshop on Comparative Oncology. Science Translational Medicine, 2016, 8, 324ps5.	5.8	108
20	Comprehensive characterization of the Published Kinase Inhibitor Set. Nature Biotechnology, 2016, 34, 95-103.	9.4	289
21	Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression. Molecular Cancer Therapeutics, 2015, 14, 2452-2462.	1.9	56
22	What Can We Learn about Antibody-Drug Conjugates from the T-DM1 Experience?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e117-e125.	1.8	13
23	Anti-Endosialin Antibody–Drug Conjugate: Potential in Sarcoma and Other Malignancies. Molecular Cancer Therapeutics, 2015, 14, 2081-2089.	1.9	31
24	Proteasome inhibitors. Biochemical Pharmacology, 2015, 96, 1-9.	2.0	144
25	<i>CCR</i> 20th Anniversary Commentary: In the Beginning, There Was PS-341. Clinical Cancer Research, 2015, 21, 939-941.	3.2	23
26	Antibody drug conjugates. Current Opinion in Oncology, 2014, 26, 476-483.	1.1	16
27	Stereospecific PARP Trapping by BMN 673 and Comparison with Olaparib and Rucaparib. Molecular Cancer Therapeutics, 2014, 13, 433-443.	1.9	627
28	Toward a Drug Development Path That Targets Metastatic Progression in Osteosarcoma. Clinical Cancer Research, 2014, 20, 4200-4209.	3.2	127
29	Targets in small cell lung cancer. Biochemical Pharmacology, 2014, 87, 211-219.	2.0	61
30	Perspective: Opportunities in recalcitrant, rare and neglected tumors. Oncology Reports, 2013, 30, 1030-1034.	1.2	9
31	The Promise of Antibody–Drug Conjugates. New England Journal of Medicine, 2012, 367, 1847-1848.	13.9	45
32	Targeting Cancer Metabolism. Clinical Cancer Research, 2012, 18, 5537-5545.	3.2	125
33	Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab, novel antibody–drug conjugates. Cancer Chemotherapy and Pharmacology, 2012, 70, 439-449.	1.1	27
34	Searching for molecular targets in sarcoma. Biochemical Pharmacology, 2012, 84, 1-10.	2.0	56
35	Characteristics of human Ewing/PNET sarcoma models. Annals of Saudi Medicine, 2011, 31, 174-182.	0.5	26
36	Antibody Conjugate Therapeutics: Challenges and Potential. Clinical Cancer Research, 2011, 17, 6389-6397.	3.2	365

#	Article	IF	Citations
37	CXCL12 (SDF-1)/CXCR4 Pathway in Cancer. Clinical Cancer Research, 2010, 16, 2927-2931.	3.2	1,159
38	Human tumor xenografts and mouse models of human tumors: re-discovering the models. Expert Opinion on Drug Discovery, 2009, 4, 1295-1305.	2.5	13
39	Treatment of Transforming Growth Factor-Beta-Insensitive Mouse Renca Tumor by Transforming Growth Factor-Beta Elimination. Urology, 2008, 72, 225-229.	0.5	9
40	Newer Cytotoxic Agents: Attacking Cancer Broadly. Clinical Cancer Research, 2008, 14, 1610-1617.	3.2	93
41	Endosialin Protein Expression and Therapeutic Target Potential in Human Solid Tumors: Sarcoma versus Carcinoma. Clinical Cancer Research, 2008, 14, 7223-7236.	3.2	90
42	Tumor Evasion of the Immune System by Converting CD4+CD25â^' T Cells into CD4+CD25+ T Regulatory Cells: Role of Tumor-Derived TGF-β. Journal of Immunology, 2007, 178, 2883-2892.	0.4	411
43	Transforming Growth Factor- \hat{l}^2 and the Immune Response to Malignant Disease. Clinical Cancer Research, 2007, 13, 6247-6251.	3.2	141
44	Antitransforming growth factor–β antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. International Journal of Radiation Oncology Biology Physics, 2006, 65, 876-881.	0.4	120
45	TGF-Î ² in cancer and as a therapeutic target. Biochemical Pharmacology, 2006, 72, 523-529.	2.0	60
46	Pericytes and Endothelial Precursor Cells: Cellular Interactions and Contributions to Malignancy. Cancer Research, 2005, 65, 9741-9750.	0.4	95
47	Combination of Antiangiogenic Therapy With Other Anticancer Therapies: Results, Challenges, and Open Questions. Journal of Clinical Oncology, 2005, 23, 1295-1311.	0.8	196
48	An in vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Research, 2002, 62, 5597-602.	0.4	58
49	Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer and Metastasis Reviews, 2001, 20, 133-143.	2.7	159
50	Dynamics of tumor oxygenation, CD31 staining and transforming growth factor- \hat{l}^2 levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. International Journal of Radiation Oncology Biology Physics, 1997, 37, 1115-1123.	0.4	50
51	Reversal of in vivo drug resistance by the transforming growth factor- \hat{l}^2 inhibitor decorin. International Journal of Cancer, 1997, 71, 49-58.	2.3	44
52	Hypoxia and drug resistance. Cancer and Metastasis Reviews, 1994, 13, 139-168.	2.7	493
53	Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. International Journal of Cancer, 1994, 57, 920-925.	2.3	220