
Chote Lal Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS	
1	Ferrocene-Functionalized Dithiocarbamate Zinc(II) Complexes as Efficient Bifunctional Catalysts for the One-Pot Synthesis of Chromene and Imidazopyrimidine Derivatives via Knoevenagel Condensation Reaction. Inorganic Chemistry, 2021, 60, 6446-6462.	1.9	17	
2	Effect of Substituents on the Crystal Structures, Optical Properties, and Catalytic Activity of Homoleptic Zn(II) and Cd(II) β-oxodithioester Complexes. Inorganic Chemistry, 2020, 59, 11417-11431.	1.9	17	
3	Impact of ligand substituents on the crystal structures, optical and conducting properties of phenylmercury(II) β-oxodithioester complexes. Journal of Organometallic Chemistry, 2020, 928, 121532.	0.8	0	
4	Synthesis and characterization of new square planar heteroleptic cationic complexes [Ni(ii) β-oxodithioester-dppe]+; their use as a catalyst for Chan–Lam coupling. New Journal of Chemistry, 2020, 44, 12143-12153.	1.4	10	
5	New heteroleptic [Ni(<scp>ii</scp>) 1,1-dithiolate-phosphine] complexes: synthesis, characterization and electrocatalytic oxygen evolution studies. Dalton Transactions, 2020, 49, 3592-3605.	1.6	12	
6	Spontaneous Resolution upon Crystallization and Preferential Induction of Chirality in a Discrete Tetrahedral Zinc(II) Complex Comprised of Achiral Precursors. Inorganic Chemistry, 2019, 58, 14449-14456.	1.9	15	
7	Preparation, Characterization and Photosensitizing Activities of Homoleptic Cu(II) Dithiocarbamates in TiO ₂ â€Based DSSC. ChemistrySelect, 2019, 4, 11140-11148.	0.7	5	
8	Highly efficient structurally characterised novel precatalysts: di- and mononuclear heteroleptic Cu(<scp>i</scp>) dixanthate/xanthate–phosphine complexes for azide–alkyne cycloadditions. New Journal of Chemistry, 2019, 43, 8939-8949.	1.4	17	
9	Impact of substituents on the crystal structures and anti-leishmanial activity of new homoleptic Bi(<scp>iii</scp>) dithiocarbamates. New Journal of Chemistry, 2019, 43, 16921-16931.	1.4	11	
10	Catalytic activity of new heteroleptic [Cu(PPh3)2(β-oxodithioester)] complexes: click derived triazolyl glycoconjugates. New Journal of Chemistry, 2019, 43, 1166-1176.	1.4	15	
11	Cooperative metal–ligand influence on the formation of coordination polymers, and conducting and photophysical properties of Tl(i) β-oxodithioester complexes. Dalton Transactions, 2018, 47, 16264-16278.	1.6	14	
12	Homoleptic d10 metal complexes containing ferrocenyl functionalized dithiocarbamates as sensitizers for TiO2 based dye-sensitized solar cells. Solar Energy, 2018, 176, 312-319.	2.9	13	
13	Synthesis, Crystal Structures and Photosensitizing Activities of Ni(II) and Pd(II) Heteroleptic Dithiolate–dppf Complexes. ChemistrySelect, 2017, 2, 2655-2664.	0.7	11	
14	Effect of functionalities on the crystal structures of new zinc(<scp>ii</scp>) dithiocarbamates: a combined anti-leishmanial and thermal decomposition study. CrystEngComm, 2017, 19, 2660-2672.	1.3	18	
15	New planar <i>trans</i> -copper(II) β-dithioester chelate complexes: synthesis, characterization, anticancer activity and DNA-binding/cleavage studies. Journal of Coordination Chemistry, 2017, 70, 565-583.	0.8	12	
16	Synthesis, characterization, DNA binding and cleavage activity of homoleptic zinc(II) β-oxodithioester chelate complexes. Journal of Coordination Chemistry, 2017, 70, 3171-3185.	0.8	5	
17	A New Series of Heteroleptic Cd(II) Diimineâ€Ferrocenyl Dithiocarbamate Complexes which Successfully Co ensitizes TiO ₂ Photoanode with Ru N719 Dye in DSSC. ChemistrySelect, 2017, 2, 8301-8311.	0.7	6	
18	Potential Impact of Substituents on the Crystal Structures and Properties of Tl(I) Ferrocenyl/Picolylâ€Functionalized Dithiocarbamates; Tlâ <th anagostic="" chemistryselect,<br="" interactions.="">2016, 1, 5733-5742.</th>	2016, 1, 5733-5742.	0.7	8

Chote Lal Yadav

#	Article	IF	CITATIONS
19	Anti-leishmanial activity of Ni(<scp>ii</scp>), Pd(<scp>ii</scp>) and Pt(<scp>ii</scp>) β-oxodithioester complexes. New Journal of Chemistry, 2015, 39, 6358-6366.	1.4	11
20	Impact of Ligand Framework on the Crystal Structures and Luminescent Properties of Cu(I) and Ag(I) Clusters and a Coordination Polymer Derived from Thiolate/Iodide/dppm Ligands. Inorganic Chemistry, 2015, 54, 2572-2579.	1.9	48
21	Rare intermolecular M⋠H–C anagostic interactions in homoleptic Ni(<scp>ii</scp>)–Pd(<scp>ii</scp>) dithiocarbamate complexes. New Journal of Chemistry, 2015, 39, 5493-5499.	1.4	39
22	Influence of the ligand frameworks on the coordination environment and properties of new phenylmercury(<scp>ii</scp>) β-oxodithioester complexes. Dalton Transactions, 2015, 44, 5909-5916.	1.6	18
23	Synthesis, crystal structures and conducting properties of heteroleptic nickel(II) 1,1-dithiolate-bpy/dppe ligand complexes. Polyhedron, 2015, 101, 251-256.	1.0	7
24	Light harvesting properties of some new heteroleptic dithiocarbimate–diamine/diimine complexes of Ni, Pd and Pt studied as photosensitizer in dye-sensitized TiO ₂ solar cells. New Journal of Chemistry, 2014, 38, 97-108.	1.4	17
25	Influence of ligand environment on the structure and properties of silver(<scp>i</scp>) dithiocarbamate cluster-based coordination polymers and dimers. New Journal of Chemistry, 2014, 38, 4478-4485.	1.4	18
26	Effect of pyridyl substituents leading to the formation of green luminescent mercury(<scp>ii</scp>) coordination polymers, zinc(<scp>ii</scp>) dimers and a monomer. New Journal of Chemistry, 2014, 38, 3737.	1.4	28
27	Photosensitizing activity of ferrocenyl bearing Ni(ii) and Cu(ii) dithiocarbamates in dye sensitized TiO2 solar cells. Dalton Transactions, 2014, 43, 4752.	1.6	72
28	Intermolecular anagostic interactions in group 10 metal dithiocarbamates. CrystEngComm, 2014, 16, 9299-9307.	1.3	51
29	Influence of ligand environments on the structures and luminescence properties of homoleptic cadmium(ii) pyridyl functionalized dithiocarbamates. CrystEngComm, 2014, 16, 6765.	1.3	35
30	Self assembly of homoleptic Ni(ii) dithiocarbamates and dithiocarbimates via Niâ<⁻H–C anagostic and C–Hâ<ī̃€ (chelate) interactions. CrystEngComm, 2013, 15, 10255.	1.3	34
31	Unusual C–Hâ√Ni anagostic interactions in new homoleptic Ni(ii) dithio complexes. CrystEngComm, 2013, 15, 4676.	1.3	46
32	Preparation, Characterization, and Conducting Properties of Chalcogenocyanato Based Complex Bimetallic Salts and Their I2-Doped Products. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 656-662.	0.6	0
33	Polyoxomolybdate(VI) anion stabilized by ammonium cation <i>via</i> CS ₂ elimination from <i>N</i> -benzyl- <i>N</i> -methylferrocenyl dithiocarbamate. Journal of Coordination Chemistry, 2012, 65, 431-438.	0.8	7
34	Cooperative Metal–Ligandâ€Induced Properties of Heteroleptic Copper(I) Xanthate/Dithiocarbamate PPh ₃ Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 3885-3891.	1.0	43
35	Unprecedented coordination of dithiocarbimate in multinuclear and heteroleptic complexes. Dalton Transactions, 2011, 40, 623-631.	1.6	38
36	The interplay of secondary Hgâ<̄S, Hgâ<̄N and Hgâ<̄ë bonding interactions in supramolecular structures of phenylmercury(ii) dithiocarbamates. CrystEngComm, 2011, 13, 6817.	1.3	48

Chote Lal Yadav

#	Article	IF	CITATIONS
37	Synthesis, Structure and Lightâ€Harvesting Properties of Some New Transitionâ€Metal Dithiocarbamates Involving Ferrocene. Chemistry - A European Journal, 2010, 16, 4307-4314.	1.7	120
38	Syntheses, crystal, photoluminescence and electrochemical investigation of some new phenylmercury(ii) dithiocarbamate complexes involving ferrocene. Dalton Transactions, 2010, 39, 2667.	1.6	51
39	Synthesis, Structure, Conductivity, and Calculated Nonlinear Optical Properties of Two Novel Bis(triphenylphosphane)copper(I) Dithiocarbamates. European Journal of Inorganic Chemistry, 2009, 2009, 2720-2725.	1.0	37
40	Syntheses, crystal and molecular structures, and properties of some new phenylmercury(ii) dithiolate complexes. Dalton Transactions, 2008, , 4999.	1.6	49
41	Synthesis and characterization of a complex salt and heterobimetallic coordination polymers of 1-benzoyl-1-cyanoethylene-2,2-dithiolate. Transition Metal Chemistry, 2005, 30, 383-388.	0.7	1
42	New heterometallic coordination polymers derived form chalcogenocyanates: synthesis, characterization and electrical properties. Transition Metal Chemistry, 2004, 29, 812-820.	0.7	1
43	SYNTHESIS AND MOLECULAR ELECTRICAL CONDUCTIVITY OF HETEROBIMETALLICS DERIVED FROM 1-ETHOXYCARBONYL-1-CYANOETHYLENE-2,2-DITHIOLATOZINCATE(II) ION. VI. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2002, 32, 189-202.	1.8	4
44	Title is missing!. Transition Metal Chemistry, 2002, 27, 359-365.	0.7	7
45	Preparation and electrical conductivity of organoheterobimetallic-maleonitriledithiolates. Transition Metal Chemistry, 2001, 26, 435-439.	0.7	6
46	SYNTHESIS AND ELECTRICAL PROPERTIES OF SOME NEW HETEROBIMETALLIC COORDINATION POLYMERS MPb(SCN)4(M = Co, Ni) AND THEIR REACTION PRODUCTS WITH LEWIS BASES. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2001, 31, 1743-1757.	1.8	2
47	Preparation, spectroscopic investigation and antibacterial activity of some organomercury(II) and organotin(IV) dithio complexes. Applied Organometallic Chemistry, 2000, 14, 484-492.	1.7	16
48	Spectroscopic and Conducting Properties of Some Heterobimetallic Complexes Formed with L-ethoxycarbonyl-L-cyanoethylene-2,2-dithiolate. Iv. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2000, 30, 281-305.	1.8	1
49	Solid State Electrical Conductance and Spectroscopic Investigations of Newly Prepared Complex Bimetallic Salts Based on Tris(isomaleonitriledithiolato)- Dioxouranate(VI) Ion. Part V. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2000, 30, 1429-1447.	1.8	5
50	Semiconducting Properties of Some Newly Synthesized Mixed-Metal, Mixed-Licand Complexes. III. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1998, 28, 929-946.	1.8	2
51	Preparation, Spectroscopic Characterization and Solid State Electrical Conductance of Bimetallic Salts of the Type [M(L—L) ₃] [M′(MNT) ₂]. Part II. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1996, 26, 627-646.	1.8	7
52	Studies on Isomaleonitriledithiolato Bridged Heterobimetallic Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1991, 21, 541-551.	1.8	3
53	Formation and Spectral Properties of Some Mixed Metal-Oxouranium(VI) Complexes with 1,1-Dicarboethoxy-2,2-Ethylene Dithiolate. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1990, 20, 743-756.	1.8	1
54	Preparative and Structural Studies on Some New Heterobimetallic Bis(Trithiocarbonates). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1986, 16, 155-167.	1.8	2