Rona R Ramsay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916085/publications.pdf

Version: 2024-02-01

57631 60497 7,102 138 44 81 citations h-index g-index papers 140 140 140 7169 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enyzmes Monoamine Oxidase (EC 1.4.3.4). , 2021, , 249-260.		O
2	Questions in the Chemical Enzymology of MAO. Chemistry, 2021, 3, 959-978.	0.9	5
3	Synthesis, biological evaluation, and molecular modeling of nitrileâ€containing compounds: Exploring multiple activities as antiâ€Alzheimer agents. Drug Development Research, 2020, 81, 215-231.	1.4	8
4	Parameters for Irreversible Inactivation of Monoamine Oxidase. Molecules, 2020, 25, 5908.	1.7	10
5	Design, synthesis, molecular modelling and <i>in vitro</i> screening of monoamine oxidase inhibitory activities of novel quinazolyl hydrazine derivatives. Royal Society Open Science, 2020, 7, 200050.	1.1	5
6	Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. Journal of Neurochemistry, 2020, 155, 191-206.	2.1	13
7	Electron carriers and energy conservation in mitochondrial respiration. ChemTexts, 2019, 5, 1.	1.0	24
8	Molecular Aspects of the Activity and Inhibition of the FAD-Containing Monoamine Oxidases. , 2019, , 397-425.		0
9	Kinetics, mechanism, and inhibition of monoamine oxidase. Journal of Neural Transmission, 2018, 125, 1659-1683.	1.4	65
10	Evidence for a Cyanine Link Between Propargylamine Drugs and Monoamine Oxidase Clarifies the Inactivation Mechanism. Frontiers in Chemistry, 2018, 6, 169.	1.8	21
11	A perspective on multiâ€target drug discovery and design for complex diseases. Clinical and Translational Medicine, 2018, 7, 3.	1.7	481
12	Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B. Scientific Reports, 2017, 7, 40541.	1.6	27
13	Neurobiology and neuropharmacology of monoaminergic systems. Progress in Neurobiology, 2017, 151, 1-3.	2.8	11
14	Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer's disease treatment. Bioorganic and Medicinal Chemistry, 2017, 25, 1143-1152.	1.4	45
15	Comparative Analysis of the Neurochemical Profile and MAO Inhibition Properties of $\langle i \rangle N \langle i \rangle - (Furan-2-ylmethyl) - \langle i \rangle N \langle i \rangle - methylprop-2-yn-1-amine. ACS Chemical Neuroscience, 2017, 8, 1026-1035.$	1.7	22
16	Multipotente Liganden mit kombinierter Cholinesterase―und Monoaminooxidase―nhibition sowie Histaminâ€H 3 Râ€Antagonismus bei neurodegenerativen Erkrankungen. Angewandte Chemie, 2017, 129, 12939-12943.	1.6	2
17	Multitargetâ€Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H ₃ R Antagonism for Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2017, 56, 12765-12769.	7.2	83
18	Editorial: Structure-Based Drug Design for Diagnosis and Treatment of Neurological Diseases. Frontiers in Pharmacology, 2017, 8, 13.	1.6	8

#	Article	IF	CITATIONS
19	Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules, 2017, 22, 1192.	1.7	156
20	One for All? Hitting Multiple Alzheimer's Disease Targets with One Drug. Frontiers in Neuroscience, 2016, 10, 177.	1.4	75
21	Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 205.	1.4	111
22	ASS234, As a New Multi-Target Directed Propargylamine for Alzheimer's Disease Therapy. Frontiers in Neuroscience, 2016, 10, 294.	1.4	58
23	Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Frontiers in Neuroscience, 2016, 10, 375.	1.4	55
24	Design, Synthesis and in vitro Evaluation of Indolotacrine Analogues as Multitargetâ€Directed Ligands for the Treatment of Alzheimer's Disease. ChemMedChem, 2016, 11, 1264-1269.	1.6	35
25	MAO and aggression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 69, 79-80.	2.5	2
26	Tacrine-allyl/propargylcysteine–benzothiazole trihybrids as potential anti-Alzheimer's drug candidates. RSC Advances, 2016, 6, 53519-53532.	1.7	27
27	Updating neuropathology and neuropharmacology of monoaminergic systems. British Journal of Pharmacology, 2016, 173, 2065-2068.	2.7	2
28	Molecular aspects of monoamine oxidase B. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 69, 81-89.	2.5	70
29	<i>cis</i> â€cyclopropylamines as mechanismâ€based inhibitors of monoamine oxidases. FEBS Journal, 2015, 282, 3190-3198.	2.2	31
30	Predicting targets of compounds against neurological diseases using cheminformatic methodology. Journal of Computer-Aided Molecular Design, 2015, 29, 183-198.	1.3	16
31	<i>N</i> -Methyl- <i>N</i> -(1-methyl-5-(3-(1-(2-methylbenzyl)piperidin-4-yl)propoxy)-1 <i>H</i> -indol-2-yl)methyl)pa New Cholinesterase and Monoamine Oxidase Dual Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 10455-10463.	rop-2-yn-] 2.9	l-amine, 56
32	Interdisciplinary Chemical Approaches for Neuropathology. CNS Neuroscience and Therapeutics, 2014, 20, 571-573.	1.9	1
33	Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1104-1110.	1.1	48
34	Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: Role of Asn181 and Ile335 validated by spectroscopic and computational studies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 389-397.	1.1	16
35	Live cell interactome of the human voltage dependent anion channel 3 (VDAC3) revealed in HeLa cells by affinity purification tag technique. Molecular BioSystems, 2014, 10, 2134-2145.	2.9	28
36	Computational Comparison of Imidazoline Association with the I2 Binding Site in Human Monoamine Oxidases. Journal of Chemical Information and Modeling, 2014, 54, 1200-1207.	2.5	13

3

#	Article	IF	Citations
37	Inhibitor Design for Monoamine Oxidases. Current Pharmaceutical Design, 2013, 19, 2529-2539.	0.9	63
38	Monoamine Oxidases: The Biochemistry of the Proteins As Targets in Medicinal Chemistry and Drug Discovery. Current Topics in Medicinal Chemistry, 2013, 12, 2189-2209.	1.0	1
39	Monoamine Oxidases: The Biochemistry of the Proteins As Targets in Medicinal Chemistry and Drug Discovery. Current Topics in Medicinal Chemistry, 2012, 12, 2189-2209.	1.0	97
40	Dietary inhibitors of monoamine oxidase A. Journal of Neural Transmission, 2011, 118, 1031-1041.	1.4	48
41	An improved approach to steady-state analysis of monoamine oxidases. Journal of Neural Transmission, 2011, 118, 1003-1019.	1.4	22
42	2-Arylthiomorpholine derivatives as potent and selective monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 1388-1395.	1.4	39
43	On the formation and nature of the imidazoline I2 binding site on human monoamine oxidase-B. Pharmacological Research, 2010, 62, 475-488.	3.1	46
44	TCP-FA4: A derivative of tranylcypromine showing improved blood–brain permeability. Biochemical Pharmacology, 2009, 78, 1412-1417.	2.0	9
45	Carnitine, mitochondrial function and therapya~†. Advanced Drug Delivery Reviews, 2009, 61, 1353-1362.	6.6	120
46	Characterization of the Covalently Bound Anionic Flavin Radical in Monoamine Oxidase A by Electron Paramagnetic Resonance. Journal of the American Chemical Society, 2007, 129, 16091-16097.	6.6	44
47	Methylene blue and serotonin toxicity: inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. British Journal of Pharmacology, 2007, 152, 946-951.	2.7	208
48	Interactions of imidazoline ligands with the active site of purified monoamine oxidase A. FEBS Journal, 2007, 274, 1567-1575.	2.2	23
49	Variations in activity and inhibition with pH: the protonated amine is the substrate for monoamine oxidase, but uncharged inhibitors bind better. Journal of Neural Transmission, 2007, 114, 707-712.	1.4	43
50	Mutation of surface cysteine 374 to alanine in monoamine oxidase A alters substrate turnover and inactivation by cyclopropylamines. Bioorganic and Medicinal Chemistry, 2005, 13, 3487-3495.	1.4	43
51	Orientation of oxazolidinones in the active site of monoamine oxidase. Biochemical Pharmacology, 2005, 70, 407-416.	2.0	23
52	The G553M Mutant of Peroxisomal Carnitine Octanoyltransferase Catalyses Acetyl Transfer and Acetyl-CoA Hydrolysis. Monatshefte Für Chemie, 2005, 136, 1341-1347.	0.9	2
53	A Stable Tyrosyl Radical in Monoamine Oxidase A. Journal of Biological Chemistry, 2005, 280, 4627-4631.	1.6	45
54	Identification of 4-Substituted 1,2,3-Triazoles as Novel Oxazolidinone Antibacterial Agents with Reduced Activity against Monoamine Oxidase A. Journal of Medicinal Chemistry, 2005, 48, 499-506.	2.9	282

#	Article	IF	Citations
55	Conformational changes in monoamine oxidase A in response to ligand binding or reduction. Biochimica Et Biophysica Acta - General Subjects, 2004, 1672, 60-66.	1.1	22
56	Carnitine acyltransferases and their influence on CoA pools in health and disease. Molecular Aspects of Medicine, 2004, 25, 475-493.	2.7	122
57	Interactions of D-amphetamine with the active site of monoamine oxidase-A. Inflammopharmacology, 2003, 11, 127-133.	1.9	4
58	A snapshot of carnitine acetyltransferase. Trends in Biochemical Sciences, 2003, 28, 343-346.	3.7	37
59	Monoamine oxidase A inhibitory potency and flavin perturbation are influenced by different aspects of pirlindole inhibitor structure. Biochemical Pharmacology, 2003, 65, 1867-1874.	2.0	18
60	Monoamine Oxidases: to Inhibit or Not to Inhibit. Mini-Reviews in Medicinal Chemistry, 2003, 3, 129-136.	1.1	36
61	Selective Modulation of Carnitine Long-chain Acyltransferase Activities. Advances in Experimental Medicine and Biology, 2002, , 103-109.	0.8	8
62	Inhibitors alter the spectrum and redox properties of monoamine oxidase A. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1601, 178-184.	1.1	21
63	Substrates but Not Inhibitors Alter the Redox Potentials of Monoamine Oxidases. Antioxidants and Redox Signaling, 2001, 3, 723-729.	2.5	16
64	Molecular enzymology of carnitine transfer and transport. BBA - Proteins and Proteomics, 2001, 1546, 21-43.	2.1	315
65	The carnitine acyltransferases: modulators of acyl-CoA-dependent reactions. Biochemical Society Transactions, 2000, 28, 182-186.	1.6	76
66	Selective Inhibition of Monoamine Oxidase B by Aminoethyl Substituted Benzyl Ethers. Journal of Enzyme Inhibition and Medicinal Chemistry, 1999, 15, 11-21.	0.5	1
67	The Role of the Carnitine System in Peroxisomal Fatty Acid Oxidation. American Journal of the Medical Sciences, 1999, 318, 28-35.	0.4	14
68	The Role of the Carnitine System in Peroxisomal Fatty Acid Oxidation. American Journal of the Medical Sciences, 1999, 318, 28.	0.4	43
69	Characteristics of L-carnitine transport by lactating rat mammary tissue. Lipids and Lipid Metabolism, 1998, 1393, 49-56.	2.6	24
70	Monoamine Oxidase Contains a Redox-active Disulfide. Journal of Biological Chemistry, 1998, 273, 14074-14076.	1.6	22
71	Active sites residues of beef liver carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase (CPT-II). Biochemical Journal, 1998, 330, 1029-1036.	1.7	9
72	Expression of a sodium-dependent L-carnitine transporter in lactating rat mammary tissue. Biochemical Society Transactions, 1998, 26, S96-S96.	1.6	5

#	Article	IF	Citations
73	Substrate regulation of monoamine oxidases. Journal of Neural Transmission Supplementum, 1998, 52, 139-147.	0.5	9
74	Carnitine palmitoyltransferase and acyl-coA binding protein: two more players in the membrane phospholipid fatty acid turnover of human red cells?. Biochemical Journal, 1997, 325, 811-814.	1.7	3
75	Inhibition of Monoamine Oxidase A by \hat{l}^2 -Carboline Derivatives. Archives of Biochemistry and Biophysics, 1997, 337, 137-142.	1.4	234
76	Inhibitor Probes of the Quinone Binding Sites of Mammalian Complex II and Escherichia coli Fumarate Reductase. Journal of Biological Chemistry, 1996, 271, 21020-21024.	1.6	39
77	Inhibition of NADH oxidation by 1-methyl-4-phenylpyridinium analogs as the basis for the prediction of the inhibitory potency of novel compounds. Journal of Biochemical Toxicology, $1996, 11, 33-43$.	0.5	9
78	Chapter 3 Redox properties of the flavin cofactor of monoamine oxidases A and B and their relationship to the kinetic mechanism. Progress in Brain Research, 1995, 106, 33-39.	0.9	13
79	Inhibition of complex I by hydrophobic analogues of N-methyl-4-phenylpyridinium (MPP+) and the use of an ion-selective electrode to measure their accumulation by mitochondria and electron-transport particles. Biochemical Journal, 1995, 306, 359-365.	1.7	34
80	Difference spectra for inhibitor binding to monoamine oxidases. Biochemical Society Transactions, 1995, 23, 457S-457S.	1.6	4
81	The active site histidine of carnitine acyltransferases. Biochemical Society Transactions, 1995, 23, 490S-490S.	1.6	2
82	Monoamine oxidases: old friends hold many surprises. FASEB Journal, 1995, 9, 605-610.	0.2	69
83	Deficiencies of NADH and succinate dehydrogenases in degenerative diseases and myopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1271, 211-219.	1.8	34
84	Dramatic Species Differences in the Susceptibility of Monoamine Oxidase B to a Group of Powerful Inhibitors. Biochemical and Biophysical Research Communications, 1995, 206, 556-562.	1.0	47
85	Secondary Structure of Monoamine Oxidase by FTIR Spectroscopy. Biochemical and Biophysical Research Communications, 1995, 208, 773-778.	1.0	16
86	Syntheses, Structures, and Enzymic Evaluations of Conformationally Constrained, Analog Inhibitors of Carnitine Acetyltransferase: (2R,6R)-, (2S,6S)-, (2R,6S)-, and (2S,6R)-6-(Carboxylatomethyl)-2-(hydroxymethyl)-2,4,4-trimethylmorpholinium. Journal of Organic Chemistry, 1995, 60, 6688-6695.	1.7	22
87	Evaluation of (2S,4S)/(2R,4R) and (2S,4R)/(2R,4S) 6,6-N,N-dimethyl-2-methyl-2-oxo-1,3-dioxa-4-hexadecyl-6,aza-2-phosphacyclooctane bromide as inhibitors for protein kinase C, carnitine octanoyltransferase, and carnitine palmitoyltransferase. Bioorganic and Medicinal Chemistry Letters. 1994, 4, 883-886.	1.0	4
88	The reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 198-202.	0.5	71
89	Studies on the Characterization of the Inhibitory Mechanism of 4′â€Alkylated 1â€Methylâ€4â€Phenylpyridining and Phenylpyridine Analogues in Mitochondria and Electron Transport Particles. Journal of Neurochemistry, 1994, 63, 655-661.	um 2.1	36
90	Reactivation of NADH Dehydrogenase (Complex I) Inhibited by 1-Methyl-4-(4'-Alkylphenyl)pyridinium Analogues: A Clue to the Nature of the Inhibition Site. Journal of Neurochemistry, 1993, 61, 1546-1548.	2.1	12

#	Article	IF	Citations
91	(+)-Hemipalmitoylcarnitinium strongly inhibits carnitine palmitoyltransferase-l in intact mitochondria. Journal of Medicinal Chemistry, 1993, 36, 237-242.	2.9	18
92	The Carnitine Acyltransferases and Their Role in Modulating Acyl-CoA Pools. Archives of Biochemistry and Biophysics, 1993, 302, 307-314.	1.4	111
93	Substrate-specific enhancement of the oxidative half-reaction of monoamine oxidase. Biochemistry, 1993, 32, 2137-2143.	1.2	71
94	Oxidation of tetrahydrostilbazole by monoamine oxidase A demonstrates the effect of alternate pathways in the kinetic mechanism. Biochemistry, 1993, 32, 9025-9030.	1.2	10
95	Substrate-specific enhancement of the oxidative half-reaction of monoamine oxidase. [Erratum to document cited in CA118(13):119713e]. Biochemistry, 1993, 32, 5490-5490.	1.2	0
96	Regulation of the longâ€chain carnitine acyltransferases. FASEB Journal, 1993, 7, 1039-1044.	0.2	52
97	Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase. Biochemical Journal, 1992, 286, 637-640.	1.7	30
98	Chapter 6 NADH-ubiquinone oxidoreductase. New Comprehensive Biochemistry, 1992, 23, 145-162.	0.1	15
99	Syntheses, structures, and enzymatic evaluations of hemiacylcarnitiniums, a new class of carnitine acyltransferase inhibitors. Journal of Organic Chemistry, 1992, 57, 3426-3431.	1.7	13
100	Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoraductase by rotenone, piericidin A, and MPP+. Biochemical and Biophysical Research Communications, 1992, 189, 47-52.	1.0	78
101	Kinetic mechanism of monoamine oxidase A. Biochemistry, 1991, 30, 4624-4629.	1.2	52
102	Regulation of Carnitine Acyltransferase Synthesis in Lean and Obese Zucker Rats by Dehydroepiandrosterone and Clofibrate. Journal of Nutrition, 1991, 121, 525-531.	1.3	16
103	The interaction of monoamine oxidases with tertiary amines. Biochemical Society Transactions, 1991, 19, 211-215.	1.6	13
104	The kinetic mechanisms of monoamine oxidases A and B. Biochemical Society Transactions, 1991, 19, 219-223.	1.6	12
105	Interaction of 1-Methyl-4-Phenylpyridinium Ion (MPP+) and Its Analogs with the Rotenone/Piericidin Binding Site of NADH Dehydrogenase. Journal of Neurochemistry, 1991, 56, 1184-1190.	2.1	213
106	Carnitine analogues and carnitine palmitoyltransferases. Biochemical Society Transactions, 1990, 18, 604-605.	1.6	2
107	Mechanism of the neurotoxicity of MPTP. FEBS Letters, 1990, 274, 1-8.	1.3	177
108	Evidence that the blockade of mitochondrial respiration by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) involves binding at the same site as the respiratory inhibitor, rotenone. Biochemical and Biophysical Research Communications, 1990, 169, 123-128.	1.0	86

#	Article	IF	CITATIONS
109	A new class of powerful inhibitors of monoamine oxidase A. Biochemical and Biophysical Research Communications, 1990, 172, 1338-1341.	1.0	5
110	Palmitoyl-L-carnitine, a metabolic intermediate of the fatty acid incorporation pathway in erythrocyte membrane phospholipids. Biochemical and Biophysical Research Communications, 1990, 173, 212-217.	1.0	28
111	Biochemical Reactions Leading to Parkinsonian Symptoms Elicited by MPTP. Advances in Behavioral Biology, 1990, , 219-225.	0.2	3
112	Oxidation of Analogs of l-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine by Monoamine Oxidases A and B and the Inhibition of Monoamine Oxidases by the Oxidation Products. Journal of Neurochemistry, 1989, 53, 1837-1842.	2.1	61
113	Enhancement by tetraphenylboron of the interaction of the 1-methyl-4-phenylpyridinium ion (MPP+) with mitochondria. Biochemical and Biophysical Research Communications, 1989, 159, 983-990.	1.0	41
114	In vitro effects of acetaminophen metabolites and analogs on the respiration of mouse liver mitochondria. Archives of Biochemistry and Biophysics, 1989, 273, 449-457.	1.4	89
115	Structural dependence of the inhibition of mitochondrial respiration and of NADH oxidase by 1-methyl-4-phenylpyridinium (MPP+) analogs and their energized accumulation by mitochondria Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9168-9172.	3.3	60
116	Mechanism of the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP)+, the toxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology, 1988, 49, 17-23.	2.0	82
117	A case of carnitine palmitoyltransferase II deficiency in human skeletal muscle. FEBS Letters, 1988, 241, 126-130.	1.3	21
118	Biochemistry Of The Neurotoxic Action Of MPTP And What It May Teach Us About The Etiology Of Idiopathic Parkinsonism. , 1988 , , $101-111$.		1
119	The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. Archives of Biochemistry and Biophysics, 1987, 259, 645-649.	1.4	106
120	Inhibition of NADH oxidation by pyridine derivatives. Biochemical and Biophysical Research Communications, 1987, 146, 53-60.	1.0	42
121	III. Bioactivation of MPTP: Reactive metabolites and possible biochemical sequelae. Life Sciences, 1987, 40, 713-719.	2.0	35
122	Stopped-flow studies on the mechanism of oxidation of N-methyl-4-phenyltetrahydropyridine by bovine liver monoamine oxidase B. Biochemistry, 1987, 26, 3045-3050.	1.2	42
123	Biochemical Events in the Development of Parkinsonism Induced by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine. Journal of Neurochemistry, 1987, 49, 1-8.	2.1	254
124	Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochemical and Biophysical Research Communications, 1986, 135, 269-275.	1.0	249
125	Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP. Life Sciences, 1986, 39, 581-588.	2.0	165
126	Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochemical and Biophysical Research Communications, 1986, 134, 743-748.	1.0	260

#	Article	IF	CITATIONS
127	Aggregation of submitochondrial particles by heparin and its application to the study of carnitine transport. Biochemical Journal, 1986, 235, 297-299.	1.7	2
128	Purification and properties of an easily solubilized l-carnitine palmitoyltransferase from beef liver mitochondria. Biochemical Society Transactions, 1986, 14, 698-698.	1.6	3
129	Iron-Sulfur Clusters in Mitochondrial Enzymes. , 1985, , 301-332.		5
130	Evidence that the activation of aconitase involves a conformational change. Biochemical Journal, 1982, 203, 327-330.	1.7	7
131	Observations on the mechanism of activation of aconitase. Biochemical Society Transactions, 1982, 10, 538-539.	1.6	2
132	Relationship of the oxidation state of the iron sulfur cluster of aconitase to activity and substrate binding. Biochemistry, 1981, 20, 7476-7482.	1.2	33
133	Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex II Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 825-828.	3.3	46
134	INHIBITORS OF CARNITINE TRANSPORT AND METABOLISM. , 1980, , 207-218.		10
135	The Role of Carnitine, the Carnitine Acyltransferases and the Carnitine-Exchange System. Biochemical Society Transactions, 1978, 6, 72-76.	1.6	12
136	The Effects of Temperature and Some Inhibitors an the Carnitine Exchange System of Heart Mitochondria. FEBS Journal, 1976, 69, 299-303.	0.2	57
137	The mechanism of fatty acid uptake by heart mitochondria: An acylcarnitine-carnitine exchange. FEBS Letters, 1975, 54, 21-25.	1.3	162
138	Exchange of the Endogenous Carnitine of Ox Heart Mitochondria with External Carnitine and its Possible Relevance to the Mechanism of Fatty-Acyl Transport into Mitochondria. Biochemical Society Transactions, 1974, 2, 1285-1286.	1.6	11