
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7915588/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of alkali hydroxide on calcium silicate hydrate (C-S-H). Cement and Concrete Research, 2022, 151, 106636.                                                                                                                                                | 4.6 | 57        |
| 2  | Fast Room-Temperature Mg <sup>2+</sup> Conductivity in<br>Mg(BH <sub>4</sub> ) <sub>2</sub> ·1.6NH <sub>3</sub> –Al <sub>2</sub> O <sub>3</sub><br>Nanocomposites. Journal of Physical Chemistry Letters, 2022, 13, 2211-2216.                                  | 2.1 | 18        |
| 3  | Effect of Water–Solid Mixing Sequence and Crystallization Water of Calcium Sulphate on the<br>Hydration of C3A. Materials, 2022, 15, 2297.                                                                                                                      | 1.3 | 1         |
| 4  | Impact of sulphate source on the hydration of ternary pastes of Portland cement, calcium aluminate cement and calcium sulphate. Cement and Concrete Composites, 2022, 131, 104502.                                                                              | 4.6 | 12        |
| 5  | Characterization of Monochromate and Hemichromate AFm Phases and Chromate-Containing<br>Ettringite by 1H, 27Al, and 53Cr MAS NMR Spectroscopy. Minerals (Basel, Switzerland), 2022, 12, 371.                                                                    | 0.8 | 1         |
| 6  | Effect of sulfate on CO2 binding efficiency of recycled alkaline materials. Cement and Concrete Research, 2022, 157, 106804.                                                                                                                                    | 4.6 | 16        |
| 7  | Methylamine Lithium Borohydride as Electrolyte for Allâ€Solidâ€State Batteries. Angewandte Chemie -<br>International Edition, 2022, 61, .                                                                                                                       | 7.2 | 20        |
| 8  | Methylamine Lithium Borohydride as Electrolyte for Allâ€Solidâ€State Batteries. Angewandte Chemie,<br>2022, 134, .                                                                                                                                              | 1.6 | 2         |
| 9  | Semi-dry carbonation of recycled concrete paste. Journal of CO2 Utilization, 2022, 63, 102111.                                                                                                                                                                  | 3.3 | 28        |
| 10 | <sup>11</sup> B Nuclear Spin–Electron Spin Interactions in <sup>11</sup> B MAS NMR Spectra of<br>Paramagnetic Metal Borohydrides. Journal of Physical Chemistry C, 2021, 125, 1113-1124.                                                                        | 1.5 | 3         |
| 11 | Effect of alkalis on enforced carbonation of cement paste: Mechanism of reaction. Journal of the<br>American Ceramic Society, 2021, 104, 1076-1087.                                                                                                             | 1.9 | 15        |
| 12 | Effect of alkalis on products of enforced carbonation of cement paste. Construction and Building Materials, 2021, 291, 123203.                                                                                                                                  | 3.2 | 27        |
| 13 | Pair distribution function and <sup>71</sup> Ga NMR study of aqueous Ga <sup>3+</sup> complexes.<br>Chemical Science, 2021, 12, 14420-14431.                                                                                                                    | 3.7 | 6         |
| 14 | Creep in reactive colloidal gels: A nanomechanical study of cement hydrates. Physical Review<br>Research, 2021, 3, .                                                                                                                                            | 1.3 | 14        |
| 15 | Incorporation of Sodium and Aluminum in Cementitious Calcium-Alumino-Silicate-Hydrate C-(A)-S-H<br>Phases Studied by <sup>23</sup> Na, <sup>27</sup> Al, and <sup>29</sup> Si MAS NMR Spectroscopy.<br>Journal of Physical Chemistry C, 2021, 125, 27975-27995. | 1.5 | 27        |
| 16 | Influence of low curing temperatures on the tensile response of low clinker strain hardening<br>UHPFRC under full restraint. Cement and Concrete Research, 2020, 128, 105940.                                                                                   | 4.6 | 12        |
| 17 | Fe(III) uptake by calcium silicate hydrates. Applied Geochemistry, 2020, 113, 104460.                                                                                                                                                                           | 1.4 | 31        |
| 18 | Probing the validity of the spinel inversion model: a combined SPXRD, PDF, EXAFS and NMR study of ZnAl <sub>2</sub> 0 <sub>4</sub> 2                                                                                                                            | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of Mg substitution on the structure and pozzolanic reactivity of calcium aluminosilicate<br>(CaO-Al2O3-SiO2) glasses. Cement and Concrete Research, 2020, 138, 106231.                                                                 | 4.6 | 30        |
| 20 | Shaped Hierarchical H-ZSM-5 Catalysts for the Conversion of Dimethyl Ether to Gasoline. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17689-17707.                                                                              | 1.8 | 9         |
| 21 | Ammine Magnesium Borohydride Nanocomposites for All-Solid-State Magnesium Batteries. ACS Applied<br>Energy Materials, 2020, 3, 9264-9270.                                                                                                     | 2.5 | 53        |
| 22 | Ammine Lanthanum and Cerium Borohydrides,<br><i>M</i> (BH <sub>4</sub> ) <sub>3</sub> · <i>n</i> NH <sub>3</sub> ; Trends in Synthesis, Structures, and<br>Thermal Properties. Inorganic Chemistry, 2020, 59, 7768-7778.                      | 1.9 | 19        |
| 23 | Effect of carbonated cement paste on composite cement hydration and performance. Cement and Concrete Research, 2020, 134, 106090.                                                                                                             | 4.6 | 111       |
| 24 | Immobilized piperazine on the surface of graphene oxide as a heterogeneous bifunctional acid–base<br>catalyst for the multicomponent synthesis of 2-amino-3-cyano-4 <i>H</i> -chromenes. Green Chemistry,<br>2020, 22, 4604-4616.             | 4.6 | 32        |
| 25 | Hydration of polyphase<br>Ca <sub>3</sub> SiO <sub>5</sub> a <sub>3</sub> Al <sub>2</sub> O <sub>6</sub> in the presence of<br>gypsum and Na <sub>2</sub> SO <sub>4</sub> . Journal of the American Ceramic Society, 2020, 103,<br>6461-6474. | 1.9 | 8         |
| 26 | Kinetics of enforced carbonation of cement paste. Cement and Concrete Research, 2020, 131, 106013.                                                                                                                                            | 4.6 | 93        |
| 27 | CO2 mineralisation of Portland cement: Towards understanding the mechanisms of enforced carbonation. Journal of CO2 Utilization, 2020, 38, 398-415.                                                                                           | 3.3 | 69        |
| 28 | Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation.<br>Cement and Concrete Research, 2020, 130, 105990.                                                                                               | 4.6 | 109       |
| 29 | A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao<br>cross-coupling reactions in water. Green Chemistry, 2020, 22, 1353-1365.                                                                      | 4.6 | 36        |
| 30 | Effect of Temperature on the Hydration of White Portland Cement–Metakaolin Blends Studied by 29Si<br>and 27Al MAS NMR. RILEM Bookseries, 2020, , 283-292.                                                                                     | 0.2 | 0         |
| 31 | Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 2019, 124, 105799.                                                                                                                  | 4.6 | 421       |
| 32 | Dissolution kinetics of calcined kaolinite and montmorillonite in alkaline conditions: Evidence for reactive Al(V) sites. Journal of the American Ceramic Society, 2019, 102, 7720-7734.                                                      | 1.9 | 51        |
| 33 | Nanoscale Ordering and Depolymerization of Calcium Silicate Hydrates in the Presence of Alkalis.<br>Journal of Physical Chemistry C, 2019, 123, 24873-24883.                                                                                  | 1.5 | 30        |
| 34 | Potassium octahydridotriborate: diverse polymorphism in a potential hydrogen storage material and potassium ion conductor. Dalton Transactions, 2019, 48, 8872-8881.                                                                          | 1.6 | 34        |
| 35 | Structure and reactivity of synthetic CaO-Al2O3-SiO2 glasses. Cement and Concrete Research, 2019, 120, 77-91.                                                                                                                                 | 4.6 | 90        |
| 36 | Optical Sensing of pH and O <sub>2</sub> in the Evaluation of Bioactive Self-Healing Cement. ACS Omega, 2019, 4, 20237-20243.                                                                                                                 | 1.6 | 16        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of ZSM-23 (MTT) zeolites with different crystal morphology and intergrowths: effects on the catalytic performance in the conversion of methanol to hydrocarbons. Catalysis Science and Technology, 2019, 9, 6782-6792.                                         | 2.1 | 7         |
| 38 | Sulfate resistance of calcined clay – Limestone – Portland cements. Cement and Concrete Research, 2019, 116, 238-251.                                                                                                                                                    | 4.6 | 85        |
| 39 | Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental <sup>27</sup> Al NMR Study. Journal of Physical Chemistry C, 2019, 123, 7831-7844.                                                                      | 1.5 | 19        |
| 40 | A quantitative study of the C3A hydration. Cement and Concrete Research, 2019, 115, 145-159.                                                                                                                                                                             | 4.6 | 74        |
| 41 | High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. Journal of Catalysis, 2018, 362, 146-163.                                                                                    | 3.1 | 120       |
| 42 | Design of a Nanometric AlTi Additive for MgB <sub>2</sub> -Based Reactive Hydride Composites with Superior Kinetic Properties. Journal of Physical Chemistry C, 2018, 122, 7642-7655.                                                                                    | 1.5 | 29        |
| 43 | The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses. Journal of Physical Chemistry B, 2018, 122, 3184-3195.                                                                                                                     | 1.2 | 14        |
| 44 | Hydrate Phase Assemblages in Calcium Sulfoaluminate – Metakaolin – Limestone Blends. RILEM<br>Bookseries, 2018, , 352-357.                                                                                                                                               | 0.2 | 6         |
| 45 | Synthesis and thermal decomposition of potassium tetraamidoboranealuminate, K[Al(NH2BH3)4].<br>International Journal of Hydrogen Energy, 2018, 43, 311-321.                                                                                                              | 3.8 | 13        |
| 46 | Efficient Solar-Driven Hydrogen Transfer by Bismuth-Based Photocatalyst with Engineered Basic Sites.<br>Journal of the American Chemical Society, 2018, 140, 16711-16719.                                                                                                | 6.6 | 58        |
| 47 | Structural Investigation of Ye'elimite,<br>Ca <sub>4</sub> Al <sub>6</sub> O <sub>12</sub> SO <sub>4</sub> , by <sup>27</sup> Al MAS and MQMAS<br>NMR at Different Magnetic Fields. Journal of Physical Chemistry C, 2018, 122, 12077-12089.                             | 1.5 | 16        |
| 48 | Distribution of Aluminum over the Tetrahedral Sites in ZSM-5 Zeolites and Their Evolution after Steam<br>Treatment. Journal of Physical Chemistry C, 2018, 122, 15595-15613.                                                                                             | 1.5 | 82        |
| 49 | Hydrogenation properties of lithium and sodium hydride – <i>closo</i> -borate,<br>[B <sub>10</sub> H <sub>10</sub> ] <sup>2â^'</sup> and [B <sub>12</sub> H <sub>12</sub> ] <sup>2â^'</sup> ,<br>composites. Physical Chemistry Chemical Physics, 2018, 20, 16266-16275. | 1.3 | 18        |
| 50 | Identification of Reactive Sites in Calcined Kaolinite and Montmorillonite from a Combination of Chemical Methods and Solid-State NMR Spectroscopy. RILEM Bookseries, 2018, , 404-408.                                                                                   | 0.2 | 2         |
| 51 | Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cement and Concrete Composites, 2017, 78, 73-83.                                                               | 4.6 | 244       |
| 52 | Resolution of the Two Aluminum Sites in Ettringite by <sup>27</sup> Al MAS and MQMAS NMR at Very<br>High Magnetic Field (22.3 T). Journal of Physical Chemistry C, 2017, 121, 4011-4017.                                                                                 | 1.5 | 32        |
| 53 | Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends.<br>Cement and Concrete Research, 2017, 95, 205-216.                                                                                                                         | 4.6 | 207       |
| 54 | Immobilized Lanthanum(III) Triflate on Graphene Oxide as a New Multifunctional Heterogeneous<br>Catalyst for the One-Pot Five-Component Synthesis of Bis(pyrazolyl)methanes. ACS Sustainable<br>Chemistry and Engineering, 2017, 5, 4598-4606.                           | 3.2 | 17        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Physical performances of alkaliâ€activated portland cementâ€glassâ€limestone blends. Journal of the<br>American Ceramic Society, 2017, 100, 4159-4172.                                                                                  | 1.9 | 8         |
| 56 | lonic liquids grafted onto graphene oxide as a new multifunctional heterogeneous catalyst and its<br>application in the one-pot multi-component synthesis of hexahydroquinolines. New Journal of<br>Chemistry, 2017, 41, 6219-6225.     | 1.4 | 22        |
| 57 | Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate<br>binders. Journal of Materials Chemistry A, 2017, 5, 17401-17412.                                                                   | 5.2 | 232       |
| 58 | Structural characterization of marine nano-quartz in chalk and flint from North Sea Tertiary chalk reservoirs for oil and gas. American Mineralogist, 2017, 102, 1402-1417.                                                             | 0.9 | 2         |
| 59 | Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH <sub>4</sub> ) <sub>3</sub> X, X = Cl, Br, I.<br>Journal of Physical Chemistry C, 2017, 121, 19010-19021.                                                                      | 1.5 | 32        |
| 60 | Dynamic Solid-State NMR Experiments Reveal Structural Changes for a Methyl Silicate Nanostructure on Deuterium Substitution. Journal of Physical Chemistry C, 2017, 121, 26507-26518.                                                   | 1.5 | 1         |
| 61 | The structure-directing amine changes everything: structures and optical properties of<br>two-dimensional thiostannates. Acta Crystallographica Section B: Structural Science, Crystal<br>Engineering and Materials, 2017, 73, 931-940. | 0.5 | 8         |
| 62 | Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag―and<br>flyâ€ashâ€like compositions. Journal of the American Ceramic Society, 2017, 100, 1941-1955.                                           | 1.9 | 105       |
| 63 | Thermodynamic modeling of hydrated white Portland cement–metakaolin–limestone blends utilizing<br>hydration kinetics from 29Si MAS NMR spectroscopy. Cement and Concrete Research, 2016, 86, 29-41.                                     | 4.6 | 101       |
| 64 | One-pot Synthesis of Terminal Vinylphosphonates Catalyzed by Pyridine Grafted GO as Reusable<br>Acid-Base Bifunctional Catalyst. ChemistrySelect, 2016, 1, 2945-2951.                                                                   | 0.7 | 6         |
| 65 | NMR and EPR Studies of Free-Radical Intermediates from Experiments Mimicking the Winds on Mars: A<br>Sink for Methane and Other Gases. Journal of Physical Chemistry C, 2016, 120, 26138-26149.                                         | 1.5 | 11        |
| 66 | Metal borohydride formation from aluminium boride and metal hydrides. Physical Chemistry Chemical Physics, 2016, 18, 27545-27553.                                                                                                       | 1.3 | 15        |
| 67 | Solid state synthesis, structural characterization and ionic conductivity of bimetallic alkali-metal yttrium borohydrides MY(BH <sub>4</sub> ) <sub>4</sub> (M = Li and Na). Journal of Materials Chemistry A, 2016, 4, 8793-8802.      | 5.2 | 37        |
| 68 | Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 2016, 88, 60-72.                                                                 | 4.6 | 207       |
| 69 | Properties of magnesium silicate hydrates (M-S-H). Cement and Concrete Research, 2016, 79, 323-332.                                                                                                                                     | 4.6 | 228       |
| 70 | Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cement and Concrete Research, 2016, 79, 101-111.                                                                                                      | 4.6 | 77        |
| 71 | Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy. Scientific Reports, 2015, 5, 17526.                                                                                         | 1.6 | 17        |
| 72 | Phase Diagram for the NaBH <sub>4</sub> –KBH <sub>4</sub> System and the Stability of a<br>Na <sub>1–<i>x</i></sub> K <sub><i>x</i></sub> BH <sub>4</sub> Solid Solution. Journal of Physical<br>Chemistry C, 2015, 119, 27919-27929.   | 1.5 | 27        |

JÃ,RGEN SKIBSTED

| #  | Article                                                                                                                                                                                                                                                                     | IF               | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 73 | Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cement and Concrete Research, 2015, 74, 116-125.                                                                                                                     | 4.6              | 150       |
| 74 | Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C <sub>3</sub> S). Advances in Applied Ceramics, 2015, 114, 362-371.                      | 0.6              | 99        |
| 75 | Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement and Concrete Research, 2015, 69, 37-49.                                                                              | 4.6              | 148       |
| 76 | Carbonation of C–S–H and C–A–S–H samples studied by 13 C, 27 Al and 29 Si MAS NMR spectroscopy<br>Cement and Concrete Research, 2015, 71, 56-65.                                                                                                                            | <sup>•</sup> 4.6 | 292       |
| 77 | TC 238-SCM: hydration and microstructure of concrete with SCMs. Materials and Structures/Materiaux Et Constructions, 2015, 48, 835-862.                                                                                                                                     | 1.3              | 189       |
| 78 | Trends in Syntheses, Structures, and Properties for Three Series of Ammine Rare-Earth Metal<br>Borohydrides, M(BH <sub>4</sub> ) <sub>3</sub> · <i>n</i> NH <sub>3</sub> (M = Y, Gd, and Dy). Inorganic<br>Chemistry, 2015, 54, 7402-7414.                                  | 1.9              | 41        |
| 79 | Phase Assemblages in Hydrated Portland Cement, Calcined Clay and Limestone Blends From Solid-State 27Al and 29Si MAS NMR, XRD, and Thermodynamic Modeling. RILEM Bookseries, 2015, , 109-115.                                                                               | 0.2              | 3         |
| 80 | Thermodynamic Modeling of Portland Cement—Metakaolin—Limestone Blends. RILEM Bookseries, 2015, ,<br>143-149.                                                                                                                                                                | 0.2              | 1         |
| 81 | Effect of the Partial Replacement of CaH <sub>2</sub> with CaF <sub>2</sub> in the Mixed System<br>CaH <sub>2</sub> + MgB <sub>2</sub> . Journal of Physical Chemistry C, 2014, 118, 28409-28417.                                                                           | 1.5              | 17        |
| 82 | Aluminum Incorporation in the C–S–H Phase of White Portland Cement–Metakaolin Blends Studied by<br><sup>27</sup> <scp><scp>Al</scp> and <sup>29</sup><scp><scp>Si</scp> MAS NMR</scp><br/>Spectroscopy. Journal of the American Ceramic Society, 2014, 97, 2662-2671.</scp> | 1.9              | 119       |
| 83 | Fluoride ions as structural probe-ions in <sup>19</sup> F MAS NMR studies of cement materials and thermally activated SCMs. Advances in Cement Research, 2014, 26, 233-246.                                                                                                 | 0.7              | 2         |
| 84 | A sink for methane on Mars? The answer is blowing in the wind. Icarus, 2014, 236, 24-27.                                                                                                                                                                                    | 1.1              | 67        |
| 85 | Synthesis, Crystal Structure, Thermal Decomposition, and <sup>11</sup> B MAS NMR Characterization<br>of Mg(BH <sub>4</sub> ) <sub>2</sub> (NH <sub>3</sub> BH <sub>3</sub> ) <sub>2</sub> . Journal of<br>Physical Chemistry C, 2014, 118, 12141-12153.                     | 1.5              | 41        |
| 86 | Magic-angle spinning solid-state multinuclear NMR on low-field instrumentation. Journal of Magnetic Resonance, 2014, 238, 20-25.                                                                                                                                            | 1.2              | 6         |
| 87 | Hydrogen reversibility of LiBH <sub>4</sub> –MgH <sub>2</sub> –Al composites. Physical Chemistry<br>Chemical Physics, 2014, 16, 8970-8980.                                                                                                                                  | 1.3              | 23        |
| 88 | Thermal Activation of a Pure Montmorillonite Clay and Its Reactivity in Cementitious Systems. Journal of Physical Chemistry C, 2014, 118, 11464-11477.                                                                                                                      | 1.5              | 83        |
| 89 | (NH <sub>4</sub> ) <sub>4</sub> Sn <sub>2</sub> S <sub>6</sub> ·3H <sub>2</sub> O: Crystal Structure,<br>Thermal Decomposition, and Precursor for Textured Thin Film. Chemistry of Materials, 2014, 26,<br>4494-4504.                                                       | 3.2              | 19        |
| 90 | Nanoconfined NaAlH <sub>4</sub> : prolific effects from increased surface area and pore volume.<br>Nanoscale, 2014, 6, 599-607.                                                                                                                                             | 2.8              | 47        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | 2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible<br>hydrogen storage. Journal of Alloys and Compounds, 2014, 599, 78-86.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8 | 36        |
| 92  | Hydrogen Storage Capacity Loss in a LiBH <sub>4</sub> –Al Composite. Journal of Physical Chemistry C,<br>2013, 117, 7423-7432.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5 | 45        |
| 93  | Hydrogen–fluorine exchange in NaBH4–NaBF4. Physical Chemistry Chemical Physics, 2013, 15, 18185.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3 | 52        |
| 94  | 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si<br>MAS NMR in studies of Portland cement including limestone additions. Cement and Concrete<br>Research, 2013, 52, 100-111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6 | 59        |
| 95  | The Effect of Alkali lons on the Incorporation of Aluminum in the Calcium Silicate Hydrate<br>( <scp><scp>C</scp>a€"<scp>S</scp>a€"<scp>S</scp>a€"<scp>A</scp>masses and the second former of the second</scp> | 1.9 | 118       |
| 96  | Investigations of the thermal decomposition of MBH4–2NH3BH3, M=Na, K. Journal of Alloys and Compounds, 2013, 580, S287-S291.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8 | 18        |
| 97  | Clay reactivity: Production of alkali activated cements. Applied Clay Science, 2013, 73, 11-16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6 | 87        |
| 98  | Hydrogen Sorption in the LiH–LiF–MgB <sub>2</sub> System. Journal of Physical Chemistry C, 2013, 117,<br>17360-17366.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5 | 9         |
| 99  | Improved hydrogen storage kinetics of nanoconfined LiBH <sub>4</sub> -MgH <sub>2</sub> reactive hydride composites catalyzed with nickel Nanoparticles. Materials Research Society Symposia Proceedings, 2012, 1441, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 | 5         |
| 100 | Role of internal coke for deactivation of ZSM-5 catalysts after low temperature removal of coke with NO2. Catalysis Science and Technology, 2012, 2, 1196.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1 | 30        |
| 101 | 2LiBH <sub>4</sub> –MgH <sub>2</sub> in a Resorcinol–Furfural Carbon Aerogel Scaffold for<br>Reversible Hydrogen Storage. Journal of Physical Chemistry C, 2012, 116, 1526-1534.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5 | 44        |
| 102 | Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates.<br>Cement and Concrete Research, 2012, 42, 1242-1251.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6 | 139       |
| 103 | LiCe(BH <sub>4</sub> ) <sub>3</sub> Cl, a New Lithium-Ion Conductor and Hydrogen Storage Material with Isolated Tetranuclear Anionic Clusters. Chemistry of Materials, 2012, 24, 1654-1663.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.2 | 128       |
| 104 | Hydration of Blended <scp>P</scp> ortland Cements Containing Calciumâ€Aluminosilicate Glass Powder<br>and Limestone. Journal of the American Ceramic Society, 2012, 95, 403-409.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 | 23        |
| 105 | Characterization of the Network Structure of Alkali-Activated Aluminosilicate Binders by Single- and<br>Double-Resonance 29si {27al} Mas Nmr Experiments. , 2012, , 707-715.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 0         |
| 106 | Synthesis of <sup>17</sup> O-Labeled Cs <sub>2</sub> WO <sub>4</sub> and Its Ambient- and<br>Low-Temperature Solid-State <sup>17</sup> O MAS NMR Spectra. Inorganic Chemistry, 2011, 50,<br>7676-7684.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9 | 10        |
| 107 | Improved Hydrogen Storage Kinetics of Nanoconfined NaAlH <sub>4</sub> Catalyzed with<br>TiCl <sub>3</sub> Nanoparticles. ACS Nano, 2011, 5, 4056-4064.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.3 | 110       |
| 108 | Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy. Journal of Alloys and Compounds, 2011, 509, S698-S704.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8 | 40        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Mixedâ€Anion and Mixed ation Borohydride KZn(BH <sub>4</sub> )Cl <sub>2</sub> : Synthesis, Structure<br>and Thermal Decomposition. European Journal of Inorganic Chemistry, 2010, 2010, 1608-1612.                                                                | 1.0 | 48        |
| 110 | Characterisation of cement hydrate phases by TEM, NMR and Raman spectroscopy. Advances in Cement Research, 2010, 22, 233-248.                                                                                                                                     | 0.7 | 141       |
| 111 | Incorporation of Phosphorus Guest Ions in the Calcium Silicate Phases of Portland Cement from <sup>31</sup> P MAS NMR Spectroscopy. Inorganic Chemistry, 2010, 49, 5522-5529.                                                                                     | 1.9 | 20        |
| 112 | Thermal Polymorphism and Decomposition of Y(BH <sub>4</sub> ) <sub>3</sub> . Inorganic Chemistry, 2010, 49, 3801-3809.                                                                                                                                            | 1.9 | 96        |
| 113 | Evidence of Intermediate-Range Order Heterogeneity in Calcium Aluminosilicate Glasses. Chemistry of<br>Materials, 2010, 22, 4471-4483.                                                                                                                            | 3.2 | 69        |
| 114 | Structure and Characterization of KSc(BH <sub>4</sub> ) <sub>4</sub> . Journal of Physical Chemistry C, 2010, 114, 19540-19549.                                                                                                                                   | 1.5 | 95        |
| 115 | Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate.<br>Cement and Concrete Research, 2010, 40, 875-884.                                                                                                         | 4.6 | 100       |
| 116 | Solid-state 51V MAS NMR spectroscopy determines component concentration and crystal phase in co-crystallised mixtures of vanadium complexes. CrystEngComm, 2010, 12, 2826.                                                                                        | 1.3 | 11        |
| 117 | A Series of Mixedâ€Metal Borohydrides. Angewandte Chemie - International Edition, 2009, 48, 6659-6663.                                                                                                                                                            | 7.2 | 228       |
| 118 | Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions. Solid State Nuclear Magnetic Resonance, 2009, 36, 32-44.                                                                                 | 1.5 | 73        |
| 119 | Site Preferences of Fluoride Guest Ions in the Calcium Silicate Phases of Portland Cement from 29Si{19F} CP-REDOR NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 14170-14171.                                                             | 6.6 | 30        |
| 120 | Structure and Dynamics of Hydrous Surface Species on Aluminaâ^'Boria Catalysts and Their Precursors<br>from <sup>1</sup> H, <sup>2</sup> H, <sup>11</sup> B, and <sup>27</sup> Al MAS NMR Spectroscopy.<br>Journal of Physical Chemistry C, 2009, 113, 2475-2486. | 1.5 | 11        |
| 121 | Site Preferences of NH4+in Its Solid Solutions with Cs2WS4and Rb2WS4from Multinuclear<br>Solid-State MAS NMR. Inorganic Chemistry, 2009, 48, 1787-1789.                                                                                                           | 1.9 | 11        |
| 122 | New opportunities in acquisition and analysis of natural abundance complex solid-state 33S MAS NMR spectra: (CH3NH3)2WS4. Physical Chemistry Chemical Physics, 2009, 11, 6981.                                                                                    | 1.3 | 19        |
| 123 | Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates. Cement and Concrete Composites, 2008, 30, 686-699.                                                                                                | 4.6 | 68        |
| 124 | Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions. Journal of Magnetic Resonance, 2008, 190, 316-326.                                                           | 1.2 | 39        |
| 125 | Characterization of cement minerals, cements and their reaction products at the atomic and nano scale. Cement and Concrete Research, 2008, 38, 205-225.                                                                                                           | 4.6 | 108       |
| 126 | Structural Environments for Boron and Aluminum in Aluminaâ^'Boria Catalysts and Their Precursors<br>from <sup>11</sup> B and <sup>27</sup> Al Single- and Double-Resonance MAS NMR Experiments. Journal<br>of Physical Chemistry C, 2008, 112, 7210-7222.         | 1.5 | 26        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Single-Crystal Growth and Characterization of Disilver(I) Monofluorophosphate(V), Ag2PO3F:  Crystal<br>Structure, Thermal Behavior, Vibrational Spectroscopy, and Solid-State 19F, 31P, and 109Ag MAS NMR<br>Spectroscopy. Inorganic Chemistry, 2007, 46, 801-808. | 1.9 | 28        |
| 128 | Evaluation of27Al and51V Electric Field Gradients and the Crystal Structure for Aluminum<br>Orthovanadate (AlVO4) by Density Functional Theory Calculations. Journal of Physical Chemistry B,<br>2006, 110, 5975-5983.                                             | 1.2 | 34        |
| 129 | Probing Crystal Structures and Transformation Reactions of Ammonium Molybdates by14N MAS NMR<br>Spectroscopy. Inorganic Chemistry, 2006, 45, 10873-10881.                                                                                                          | 1.9 | 24        |
| 130 | A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cement and Concrete Research, 2006, 36, 3-17.                                                                                                    | 4.6 | 285       |
| 131 | Effects of T2-relaxation in MAS NMR spectra of the satellite transitions for quadrupolar nuclei: a<br>27Al MAS and single-crystal NMR study of alum KAl(SO4)2·12H2O. Journal of Magnetic Resonance, 2005,<br>173, 209-217.                                         | 1.2 | 5         |
| 132 | Structure refinement of CsNO3(II) by coupling of 14N MAS NMR experiments with WIEN2k DFT calculations. Chemical Physics Letters, 2005, 402, 133-137.                                                                                                               | 1.2 | 40        |
| 133 | Formation and Structure of Conjugated Salen-Cross-Linked Polymers and Their Application in<br>Asymmetric Heterogeneous Catalysis. European Journal of Organic Chemistry, 2005, 2005, 342-347.                                                                      | 1.2 | 34        |
| 134 | Refinement of Borate Structures from 11B MAS NMR Spectroscopy and Density Functional Theory Calculations of 11B Electric Field Gradients. Journal of Physical Chemistry A, 2005, 109, 1989-1997.                                                                   | 1.1 | 68        |
| 135 | A solid-state 14N magic-angle spinning NMR study of some amino acids. Journal of Magnetic Resonance, 2004, 166, 262-272.                                                                                                                                           | 1.2 | 70        |
| 136 | Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cement and Concrete Research, 2004, 34, 857-868.                                                            | 4.6 | 291       |
| 137 | The Complete 51V MAS NMR Spectrum of Surface Vanadia Nanoparticles on Anatase (TiO2):  Vanadia<br>Surface Structure of a DeNOx Catalyst. Journal of the American Chemical Society, 2004, 126, 4926-4933.                                                           | 6.6 | 51        |
| 138 | 11B Chemical Shift Anisotropies in Borates from 11B MAS, MQMAS, and Single-Crystal NMR<br>Spectroscopy. Journal of Physical Chemistry A, 2004, 108, 586-594.                                                                                                       | 1.1 | 73        |
| 139 | Solid state NMR studies of the hydration of molecular sieve AlPO-36. Studies in Surface Science and Catalysis, 2004, 154, 1238-1245.                                                                                                                               | 1.5 | 1         |
| 140 | Determination of nitrogen chemical shift anisotropy from the second-order cross-term in 14N MAS NMR spectroscopy. Chemical Physics Letters, 2003, 377, 426-432.                                                                                                    | 1.2 | 19        |
| 141 | 29Si cross-polarization magic-angle spinning NMR spectroscopy––an efficient tool for quantification of thaumasite in cement-based materials. Cement and Concrete Composites, 2003, 25, 823-829.                                                                    | 4.6 | 14        |
| 142 | Small 51V chemical shift anisotropy for LaVO4 from MQMAS and MAS NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2003, 23, 107-115.                                                                                                                      | 1.5 | 12        |
| 143 | Unusual observation of nitrogen chemical shift anisotropies in tetraalkylammonium halides by 14N<br>MAS NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2003, 24, 218-235.                                                                               | 1.5 | 27        |
| 144 | Hydration of Portland cement in the presence of clay minerals studied by <sup>29</sup> Si and <sup>27</sup> Al MAS NMR spectroscopy. Advances in Cement Research, 2003, 15, 103-112.                                                                               | 0.7 | 38        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Incorporation of Aluminum in the Calcium Silicate Hydrate (Câ^'Sâ^'H) of Hydrated Portland Cements:Â A<br>High-Field27Al and29Si MAS NMR Investigation. Inorganic Chemistry, 2003, 42, 2280-2287.               | 1.9 | 321       |
| 146 | A thermodynamic model for predicting the stability of thaumasite. Cement and Concrete Composites, 2003, 25, 867-872.                                                                                            | 4.6 | 28        |
| 147 | 29Si Chemical Shift Anisotropies in Calcium Silicates from High-Field29Si MAS NMR Spectroscopy.<br>Inorganic Chemistry, 2003, 42, 2368-2377.                                                                    | 1.9 | 81        |
| 148 | 14N MAS NMR Spectroscopy and Quadrupole Coupling Data in Characterization of the IV ↔ III Phase Transition in Ammonium Nitrate. Journal of Physical Chemistry B, 2002, 106, 3026-3032.                          | 1.2 | 37        |
| 149 | Characterization of the αâ <sup>~</sup> β Phase Transition in Friedels Salt (Ca2Al(OH)6Cl·2H2O) by<br>Variable-Temperature 27Al MAS NMR Spectroscopy. Journal of Physical Chemistry A, 2002, 106,<br>6676-6682. | 1.1 | 29        |
| 150 | Hydrothermal Synthesis, Single-Crystal Structure Analysis, and Solid-State NMR Characterization of Zn2(OH)0.14(3)F0.86(3)(PO4). Journal of Solid State Chemistry, 2002, 164, 42-50.                             | 1.4 | 9         |
| 151 | β-VO2—a V(IV) or a mixed-valence V(III)–V(V) oxide—studied by 51V MAS NMR spectroscopy. Chemical<br>Physics Letters, 2002, 356, 73-78.                                                                          | 1.2 | 17        |
| 152 | Aluminum Orthovanadate (AlVO4):Â Synthesis and Characterization by27Al and51V MAS and MQMAS<br>NMR Spectroscopy. Inorganic Chemistry, 2002, 41, 6432-6439.                                                      | 1.9 | 42        |
| 153 | Crystal structure of α-Mg2V2O7 from synchrotron X-ray powder diffraction and characterization by<br>51V MAS NMR spectroscopy. Dalton Transactions RSC, 2001, , 3214-3218.                                       | 2.3 | 24        |
| 154 | Resolving multiple 27Al sites in AlVO4 by 27Al MAS NMR spectroscopy at 21.15 Tesla. Chemical Communications, 2001, , 2690-2691.                                                                                 | 2.2 | 6         |
| 155 | 14N MAS NMR Spectroscopy:Â The Nitrate Ion. Journal of the American Chemical Society, 2001, 123, 5098-5099.                                                                                                     | 6.6 | 68        |
| 156 | Solid-State NMR Characterization of the Mineral Searlesite and Its Detection in Complex Synthesis Mixtures. Inorganic Chemistry, 2001, 40, 5906-5912.                                                           | 1.9 | 13        |
| 157 | 51V MAS NMR Investigation of51V Quadrupole Coupling and Chemical Shift Anisotropy in Divalent<br>Metal Pyrovanadates. Journal of Physical Chemistry B, 2001, 105, 420-429.                                      | 1.2 | 66        |
| 158 | 59Co Chemical Shift Anisotropy and Quadrupole Coupling for K3Co(CN)6 from MQMAS and MAS NMR Spectroscopy. Solid State Nuclear Magnetic Resonance, 2001, 20, 23-34.                                              | 1.5 | 15        |
| 159 | Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy. Journal of Applied Physics, 2001, 89, 4134-4138.                                              | 1.1 | Ο         |
| 160 | Influence of cement constitution and temperature on chloride binding in cement paste. Advances in<br>Cement Research, 2000, 12, 57-64.                                                                          | 0.7 | 24        |
| 161 | Zeolites by confined space synthesis – characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39, 393-401. | 2.2 | 158       |
| 162 | Synthesis and characterization of basic bismuth(III) nitrates. Dalton Transactions RSC, 2000, , 265-270.                                                                                                        | 2.3 | 69        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Characterization of Divalent Metal Metavanadates by51V Magic-Angle Spinning NMR Spectroscopy of the Central and Satellite Transitions. Inorganic Chemistry, 2000, 39, 2135-2145.                                                                                 | 1.9 | 57        |
| 164 | Solid-State QCPMG NMR of Low-γ Quadrupolar Metal Nuclei in Natural Abundance. Journal of the American Chemical Society, 2000, 122, 7080-7086.                                                                                                                    | 6.6 | 123       |
| 165 | Characterization of a New Hexasodium Diphosphopentamolybdate Hydrate, Na6[P2Mo5O23]·7H2O, by<br>23Na MQMAS NMR Spectroscopy and X-ray Powder Diffraction. Inorganic Chemistry, 2000, 39, 4130-4136.                                                              | 1.9 | 8         |
| 166 | Solid-state NMR of RbVO3. A comparison of experiments for retrieving chemical shielding and quadrupole coupling tensorial interactions. Solid State Nuclear Magnetic Resonance, 1999, 14, 203-210.                                                               | 1.5 | 6         |
| 167 | 35Cl and37Cl Magic-Angle Spinning NMR Spectroscopy in the Characterization of Inorganic Perchlorates. Inorganic Chemistry, 1999, 38, 1806-1813.                                                                                                                  | 1.9 | 47        |
| 168 | Characterization of Na5P3O10 Polymorphs by 23Na MAS, 23Na MQMAS, and 31P MAS NMR Spectroscopy.<br>Inorganic Chemistry, 1999, 38, 84-92.                                                                                                                          | 1.9 | 30        |
| 169 | Characterization of Mo(CO)6by95Mo Single-Crystal NMR Spectroscopy. Journal of Physical Chemistry<br>A, 1999, 103, 9144-9149.                                                                                                                                     | 1.1 | 25        |
| 170 | Variable-Temperature 87Rb Magic-Angle Spinning NMR Spectroscopy of Inorganic Rubidium Salts.<br>Journal of Physical Chemistry A, 1999, 103, 7958-7971.                                                                                                           | 1.1 | 35        |
| 171 | Quantitative Aspects of 27Al MAS NMR of Calcium Aluminoferrites. Advanced Cement Based Materials, 1998, 7, 57-59.                                                                                                                                                | 0.4 | 33        |
| 172 | 51V Chemical Shielding and Quadrupole Coupling in Ortho- and Metavanadates from51V MAS NMR<br>Spectroscopy. Inorganic Chemistry, 1998, 37, 3083-3092.                                                                                                            | 1.9 | 76        |
| 173 | Discussion: Quantification of thaumasite in cementitious materials by29Si{1H} cross-polarization magic-angle NMR spectroscopy. Advances in Cement Research, 1997, 9, 135-138.                                                                                    | 0.7 | 3         |
| 174 | Pulsed field gradient multiple-quantum MAS NMR spectroscopy of half-integer spin quadrupolar<br>nuclei. Chemical Physics Letters, 1997, 281, 44-48.                                                                                                              | 1.2 | 24        |
| 175 | 133Cs Chemical Shielding Anisotropies and Quadrupole Couplings from Magic-Angle Spinning NMR of<br>Cesium Saltsâ€. The Journal of Physical Chemistry, 1996, 100, 14872-14881.                                                                                    | 2.9 | 62        |
| 176 | Quadrupole Coupling and Anisotropic Shielding from Single-Crystal NMR of the Central Transition<br>for Quadrupolar Nuclei.87Rb NMR of RbClO4and Rb2SO4. Journal of Magnetic Resonance Series A, 1996,<br>122, 111-119.                                           | 1.6 | 58        |
| 177 | Quantification of thaumasite in cementitious materials by <sup>29</sup> Si { <sub>1</sub> H}<br>cross-polarization magic-angle spinning NMR spectroscopy. Advances in Cement Research, 1995, 7, 69-83.                                                           | 0.7 | 29        |
| 178 | Line shapes and widths of MAS sidebands for 27Al satellite transitions. Multinuclear MAS NMR of<br>tugtupite Na8Al2Be2Si8O24Cl2. Solid State Nuclear Magnetic Resonance, 1995, 5, 239-255.                                                                       | 1.5 | 23        |
| 179 | Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4423.                                                                                               | 1.7 | 68        |
| 180 | 23Na Magic-angle spinning nuclear magnetic resonance of central and satellite transitions in the<br>characterization of the anhydrous, dihydrate, and mixed phases of sodium molybdate and tungstate.<br>Solid State Nuclear Magnetic Resonance, 1994, 3, 29-38. | 1.5 | 17        |

| #   | Article                                                                                                                                                                                                    | IF  | Citations |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Direct observation of aluminium guest ions in the silicate phases of cement minerals by 27 Al MAS NMR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2095.                 | 1.7 | 81        |
| 182 | 51V MAS NMR spectroscopy: determination of quadrupole and anisotropic shielding tensors, including the relative orientation of their principal-axis systems. Chemical Physics Letters, 1992, 188, 405-412. | 1.2 | 155       |
| 183 | Satellite transitions in MAS NMR spectra of quadrupolar nuclei. Journal of Magnetic Resonance, 1991, 95, 88-117.                                                                                           | 0.5 | 83        |
| 184 | High-speed spinning versus high magnetic field in MAS NMR of quadrupolar nuclei. 27Al MAS NMR of<br>3CaOA·Al2O3. Journal of Magnetic Resonance, 1991, 92, 669-676.                                         | 0.5 | 16        |
| 185 | Correlation between 29Si NMR chemical shifts and mean Siî—,O bond lengths for calcium silicates.<br>Chemical Physics Letters, 1990, 172, 279-283.                                                          | 1.2 | 47        |
| 186 | Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids. Journal of<br>Magnetic Resonance, 1989, 85, 173-180.                                                           | 0.5 | 55        |
| 187 | 29Si MAS NMR studies of portland cement components and effects of microsilica on the hydration reaction. Cement and Concrete Research, 1988, 18, 789-798.                                                  | 4.6 | 129       |