
Dornadula Chandrasekharam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7915580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geothermal resources for sustainable development: A case study. International Journal of Energy Research, 2022, 46, 20501-20518.	2.2	17
2	Carbon dioxide emissions mitigation strategy through enhanced geothermal systems: western Anatolia, Turkey. Environmental Earth Sciences, 2022, 81, 235.	1.3	7
3	Enhanced geothermal systems (EGS) for UN sustainable development goals. Discover Energy, 2022, 2, .	1.1	1
4	Geothermal potential of granites: Case study- Kaymaz and Sivrihisar (Eskisehir region) Western Anatolia. Renewable Energy, 2022, 196, 870-882.	4.3	4
5	High heat generating granites of Kestanbol: future enhanced geothermal system (EGS) province in western Anatolia. Turkish Journal of Earth Sciences, 2021, 30, 1032-1044.	0.4	8
6	Geothermal energy for food and water security for Yemen: a review. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	5
7	Water and Food Nexus: Role of Socio-Economic Status on Water–Food Nexus in an Urban Agglomeration Hyderabad, India Using Consumption Water Footprint. Water (Switzerland), 2021, 13, 637.	1.2	1
8	A preliminary investigation for the assessment of geothermal potential at Eastern Peninsular India. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	1.3	9
9	Geothermal energy for sustainable water resources management. International Journal of Green Energy, 2020, 17, 1-12.	2.1	10
10	CO2 emissions from renewables: solar pv, hydrothermal and EGS sources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	1.3	16
11	Guest editorial for the topical collection: sustainable development and utilization of geothermal systems. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	1.3	0
12	Association of geomorphic features with groundwater quality and freshwater availability in coastal regions. International Journal of Environmental Science and Technology, 2020, 17, 3313-3328.	1.8	12
13	Tracing the evolution of thermal springs in the Hazaribagh area of Eastern Peninsular India through hydrogeochemical and isotopic analyses. Geothermics, 2020, 85, 101817.	1.5	12
14	Quantifying the water footprint of an urban agglomeration in developing economy. Sustainable Cities and Society, 2019, 50, 101686.	5.1	13
15	Geothermal energy for desalination to secure food security: case study in Djibouti. Energy, Sustainability and Society, 2019, 9, .	1.7	8
16	Desalination of Red Sea and Gulf of Aden Seawater to Mitigate the Fresh Water Crisis in the Yemen Republic. Springer Oceanography, 2019, , 195-213.	0.2	3
17	Geothermal energy potential of Tulsishyam thermal springs of Gujarat, India. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	8
18	Water for the millions: Focus Saudi Arabia. Water-Energy Nexus, 2018, 1, 142-144.	1.7	11

#	Article	IF	CITATIONS
19	Fluoride contamination of groundwater and its seasonal variability in parts of Purulia district, West Bengal, India. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	18
20	Water resource management using geothermal energy: Eritrea. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	3
21	Desalination of Seawater Using Geothermal Energy for Food and Water Security: Arab and Sub-Saharan Countries. , 2018, , 177-224.		9
22	An Influence of Thermally-Induced Micro-Cracking under Cooling Treatments: Mechanical Characteristics of Australian Granite. Energies, 2018, 11, 1338.	1.6	87
23	Geochemical evolution of geothermal fluids around the western Red Sea and East African Rift geothermal provinces. Journal of Asian Earth Sciences, 2018, 164, 292-306.	1.0	8
24	Desalination of Seawater using Geothermal Energy to Meet Future Fresh Water Demand of Saudi Arabia. Water Resources Management, 2017, 31, 781-792.	1.9	10
25	The potential contribution of geothermal energy to electricity supply in Saudi Arabia. International Journal of Sustainable Energy, 2016, 35, 824-833.	1.3	13
26	Geothermal energy potential of eastern desert region, Egypt. Environmental Earth Sciences, 2016, 75, 1.	1.3	15
27	Potential Geothermal Energy Resources of India: A Review. Current Sustainable/Renewable Energy Reports, 2016, 3, 80-91.	1.2	33
28	Contamination and mobilization of arsenic in the soil and groundwater and its influence on the irrigated crops, Manipur Valley, India. Environmental Earth Sciences, 2016, 75, 1.	1.3	21
29	Major and trace element concentrations in the geothermal springs along the west coast of Maharashtra, India. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	11
30	Climate Change Mitigation Strategy through Utilization of Geothermal Energy Resources from Western Arabian Shield, Saudi Arabia. Journal of Climate Change, 2015, 1, 129-134.	0.2	3
31	Thermo-mechanical properties of Bundelkhand granite near Jhansi, India. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2015, 1, 35-53.	1.3	40
32	Geothermal energy resources of Jizan, SW Saudi Arabia. Journal of African Earth Sciences, 2015, 109, 55-67.	0.9	25
33	CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: An experimental study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 123-137.	2.6	81
34	Acidification of shallow groundwater in the unconfined sandy aquifer of the city of Douala, Cameroon, Western Africa: implications for groundwater quality and use. Environmental Earth Sciences, 2015, 74, 6831-6846.	1.3	22
35	The potential of high heat generating granites as EGS source to generate power and reduce CO 2 emissions, western Arabian shield, Saudi Arabia. Journal of African Earth Sciences, 2015, 112, 213-233.	0.9	15
36	Evolution of geothermal systems around the Red Sea. Environmental Earth Sciences, 2015, 73, 4215-4236.	1.3	20

#	Article	IF	CITATIONS
37	Physicochemical evolution of the thermal springs over the Siwana Ring Complex, western Rajasthan. Journal of the Geological Society of India, 2014, 84, 668-674.	0.5	7
38	High-heat-producing granites of East Dharwar Craton around Gugi, Karnataka, and their possible influence on the evolution of Rajapur thermal springs, Deccan Volcanic Province, India. Geothermal Energy, 2014, 2, .	0.9	13
39	Geochemistry of thermal springs around Lake Abhe, Western Djibouti. International Journal of Sustainable Energy, 2014, 33, 1090-1102.	1.3	13
40	Geothermal energy resources of wadi Al-Lith, Saudi Arabia. Journal of African Earth Sciences, 2014, 97, 357-367.	0.9	38
41	Geochemical Signature of Arsenic-Contaminated Groundwater in Barak Valley (Assam) and Surrounding Areas, Northeastern India. Procedia Earth and Planetary Science, 2013, 7, 834-837.	0.6	18
42	Dissolved organic carbon from the traditional jute processing technique and its potential influence on arsenic enrichment in the Bengal Delta. Applied Geochemistry, 2012, 27, 292-303.	1.4	19
43	Temporal variations in arsenic concentration in the groundwater of Murshidabad District, West Bengal, India. Environmental Earth Sciences, 2011, 62, 223-232.	1.3	46
44	Deccan Traps Flood Basalt Province: An Evaluation of the Thermochemical Plume Model. , 2011, , 29-53.		29
45	Pollution characteristics of alluvial groundwater from springs and bore wells in semi-urban informal settlements of Douala, Cameroon, Western Africa. Environmental Earth Sciences, 2010, 61, 287-298.	1.3	55
46	Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta. Water Research, 2010, 44, 5575-5588.	5.3	67
47	Comment on "Thermoluminescence and optically stimulated luminescence signals from volcanic ash: History of volcanism in Barren Island, Andaman Sea―by D. Banerjee (Quaternary Geochronology). Quaternary Geochronology, 2010, 5, 283-284.	0.6	0
48	Volcanological and petrological evolution of Barren Island (Andaman Sea, Indian Ocean). Journal of Asian Earth Sciences, 2009, 35, 469-487.	1.0	19
49	Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 2005, 20, 1890-1906.	1.4	202
50	Petrology of the prehistoric lavas and dyke of the Barren Island, Andaman Sea, Indian Ocean. Journal of Earth System Science, 2004, 113, 715-721.	0.6	11
51	Geochemical stratigraphy of Deccan flood basalts of the Bijasan Ghat section, Satpura Range, India. Journal of Asian Earth Sciences, 2004, 23, 127-139.	1.0	52
52	Geochemistry, geothermics and relationship to active tectonics of Gujarat and Rajasthan thermal discharges, India. Journal of Volcanology and Geothermal Research, 2003, 127, 19-32.	0.8	23
53	Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 2003, 18, 1417-1434.	1.4	242
54	Geochemistry of Flood Basalts of the Toranmal Section, Northern Deccan Traps, India: Implications for Regional Deccan Stratigraphy. Journal of Petrology, 2000, 41, 1099-1120.	1.1	160

#	Article	IF	CITATIONS
55	Petrogenetic significance of ferro-enstatite orthopyroxene in basaltic dikes from the Tapi rift, Deccan flood basalt province, India. Earth and Planetary Science Letters, 2000, 179, 469-476.	1.8	19
56	Origin and evolution of â€~intracratonic' thermal fluids from central-western peninsular India. Earth and Planetary Science Letters, 2000, 181, 377-394.	1.8	79
57	Hydrogeochemistry of Damt thermal springs, Yemen Republic. Geothermics, 1999, 28, 241-252.	1.5	17
58	Elemental and Nd–Sr–Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. Journal of Volcanology and Geothermal Research, 1999, 93, 111-123.	0.8	47
59	Geochemistry of Tattapani thermal springs, madhya Pradesh, India—field and experimental investigations. Geothermics, 1995, 24, 553-559.	1.5	30
60	Structure and evolution of the western continental margin of India deduced from gravity, seismic, geomagnetic and geochronological studies. Physics of the Earth and Planetary Interiors, 1985, 41, 186-198.	0.7	69
61	Low-Enthalpy Geothermal Resources for Power Generation. , 0, , .		36