Ilya Grigoriev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7915405/publications.pdf

Version: 2024-02-01

236925 361022 4,220 35 25 35 h-index citations g-index papers 39 39 39 4747 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. Journal of Cell Biology, 2005, 168, 141-153.	5.2	409
2	STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER. Current Biology, 2008, 18, 177-182.	3.9	378
3	Mammalian end binding proteins control persistent microtubule growth. Journal of Cell Biology, 2009, 184, 691-706.	5. 2	331
4	Rab6 Regulates Transport and Targeting of Exocytotic Carriers. Developmental Cell, 2007, 13, 305-314.	7.0	295
5	CLASPs Attach Microtubule Plus Ends to the Cell Cortex through a Complex with LL5 \hat{I}^2 . Developmental Cell, 2006, 11, 21-32.	7.0	288
6	Microtubule Minus-End Stabilization by Polymerization-Driven CAMSAP Deposition. Developmental Cell, 2014, 28, 295-309.	7.0	235
7	BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular Biology of the Cell, 2012, 23, 4226-4241.	2.1	231
8	A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. Current Biology, 2012, 22, 1800-1807.	3.9	192
9	Rab6, Rab8, and MICAL3 Cooperate in Controlling Docking and Fusion of Exocytotic Carriers. Current Biology, 2011, 21, 967-974.	3.9	167
10	CFEOM1-Associated Kinesin KIF21A Is a Cortical Microtubule Growth Inhibitor. Developmental Cell, 2013, 27, 145-160.	7.0	157
11	MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons. Neuron, 2017, 94, 347-362.e7.	8.1	134
12	In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends. Current Biology, 2010, 20, 1717-1722.	3.9	130
13	Actin–microtubule coordination at growing microtubule ends. Nature Communications, 2014, 5, 4778.	12.8	126
14	SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase. Journal of Cell Biology, 2011, 193, 1083-1099.	5.2	116
15	Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Developmental Cell, 2016, 39, 44-60.	7.0	114
16	MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 2019, 218, 1298-1318.	5. 2	114
17	Bicaudal D Family Adaptor Proteins Control the Velocity of Dynein-Based Movements. Cell Reports, 2014, 8, 1248-1256.	6.4	101
18	Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes. Current Biology, 2016, 26, 1713-1721.	3.9	97

#	Article	IF	Citations
19	Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth. Developmental Cell, 2016, 37, 362-376.	7.0	90
20	EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. Journal of Cell Biology, 2017, 216, 3179-3198.	5.2	76
21	Dissecting the Nanoscale Distributions and Functions of Microtubule-End-Binding Proteins EB1 and ch-TOG in Interphase HeLa Cells. PLoS ONE, 2012, 7, e51442.	2.5	57
22	Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. ELife, 2020, 9, .	6.0	46
23	MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger Complex during Anaphase. Current Biology, 2020, 30, 2628-2637.e9.	3.9	42
24	Two populations of cytoplasmic dynein contribute to spindle positioning in <i>C. elegans</i> embryos. Journal of Cell Biology, 2017, 216, 2777-2793.	5.2	39
25	Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure, 2017, 25, 924-932.e4.	3.3	37
26	GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Developmental Cell, 2017, 40, 81-94.	7.0	31
27	Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Current Biology, 2020, 30, 972-987.e12.	3.9	30
28	Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations. Scientific Reports, 2016, 6, 30668.	3.3	26
29	MICAL3 Flavoprotein Monooxygenase Forms a Complex with Centralspindlin and Regulates Cytokinesis. Journal of Biological Chemistry, 2016, 291, 20617-20629.	3.4	25
30	In Vitro Reconstitution of Dynamic Microtubules Interacting with Actin Filament Networks. Methods in Enzymology, 2014, 540, 301-320.	1.0	24
31	Deep-learning method for data association in particle tracking. Bioinformatics, 2020, 36, 4935-4941.	4.1	22
32	Microtubule Dynamics at the Cell Cortex Probed by TIRF Microscopy. Methods in Cell Biology, 2010, 97, 91-109.	1.1	17
33	Centrobin regulates centrosome function in interphase cells by limiting pericentriolar matrix recruitment. Cell Cycle, 2013, 12, 899-906.	2.6	15
34	F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the <i>Caenorhabditis elegans</i> embryo. Molecular Biology of the Cell, 2013, 24, 2201-2215.	2.1	14
35	Automated Analysis of Intracellular Dynamic Processes. Methods in Molecular Biology, 2017, 1563, 209-228.	0.9	8