David Haussler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7915134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	27.8	21,074
2	The Human Genome Browser at UCSC. Genome Research, 2002, 12, 996-1006.	5.5	8,776
3	Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520-562.	27.8	6,319
4	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	5.5	4,217
5	Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology, 2020, 38, 675-678.	17.5	2,069
6	Using native and syntenically mapped cDNA alignments to improve <i>de novo</i> gene finding. Bioinformatics, 2008, 24, 637-644.	4.1	1,618
7	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	12.6	1,583
8	Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome Research, 2004, 14, 708-715.	5.5	1,290
9	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	27.8	1,139
10	Human–Mouse Alignments with BLASTZ. Genome Research, 2003, 13, 103-107.	5.5	1,071
11	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
12	The UCSC Genome Browser database: 2015 update. Nucleic Acids Research, 2015, 43, D670-D681.	14.5	891
13	Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 2017, 35, 314-316.	17.5	873
14	Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11484-11489.	7.1	792
15	The UCSC Genome Browser database: 2019 update. Nucleic Acids Research, 2019, 47, D853-D858.	14.5	699
16	Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Research, 2016, 26, 342-350.	5.5	679
17	Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4325-4333.	7.1	652
18	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2013, 2, 10.	6.4	582

#	Article	IF	CITATIONS
19	Comparative and demographic analysis of orang-utan genomes. Nature, 2011, 469, 529-533.	27.8	541
20	Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell, 2019, 176, 743-756.e17.	28.9	423
21	Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nature Biotechnology, 2001, 19, 248-252.	17.5	400
22	An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature, 2014, 516, 242-245.	27.8	396
23	The UCSC Genome Browser database: 2016 update. Nucleic Acids Research, 2016, 44, D717-D725.	14.5	376
24	Long-read sequence assembly of the gorilla genome. Science, 2016, 352, aae0344.	12.6	368
25	Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell, 2018, 173, 1356-1369.e22.	28.9	366
26	The UCSC Genome Browser database: 2021 update. Nucleic Acids Research, 2021, 49, D1046-D1057.	14.5	354
27	Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology, 2020, 38, 1044-1053.	17.5	344
28	High-resolution comparative analysis of great ape genomes. Science, 2018, 360, .	12.6	304
29	The Human Epigenome Browser at Washington University. Nature Methods, 2011, 8, 989-990.	19.0	302
30	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	12.6	300
31	The UCSC Cancer Genomics Browser: update 2015. Nucleic Acids Research, 2015, 43, D812-D817.	14.5	300
32	Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature Methods, 2015, 12, 623-630.	19.0	282
33	Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics, 2021, 53, 809-816.	21.4	264
34	Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature, 2020, 587, 246-251.	27.8	256
35	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
36	Cactus: Algorithms for genome multiple sequence alignment. Genome Research, 2011, 21, 1512-1528.	5.5	245

#	Article	IF	CITATIONS
37	The Human Pangenome Project: a global resource to map genomic diversity. Nature, 2022, 604, 437-446.	27.8	192
38	The UCSC Genome Browser database: 2022 update. Nucleic Acids Research, 2022, 50, D1115-D1122.	14.5	175
39	HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics, 2013, 29, 1341-1342.	4.1	164
40	BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genetics, 2018, 14, e1007752.	3.5	148
41	The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau093-bau093.	3.0	133
42	Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science, 2021, 374, abg8871.	12.6	132
43	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	124
44	Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage. PLoS Computational Biology, 2007, 3, e247.	3.2	103
45	Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Reports, 2019, 29, 1675-1689.e9.	6.4	103
46	Alignathon: a competitive assessment of whole-genome alignment methods. Genome Research, 2014, 24, 2077-2089.	5.5	102
47	GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics, 2021, 1, 100029.	6.5	94
48	Cactus Graphs for Genome Comparisons. Journal of Computational Biology, 2011, 18, 469-481.	1.6	93
49	Stability of SARS-CoV-2 phylogenies. PLoS Genetics, 2020, 16, e1009175.	3.5	92
50	RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection. PLoS ONE, 2014, 9, e111516.	2.5	90
51	Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation. Genome Research, 2018, 28, 1029-1038.	5.5	86
52	The UCSC SARS-CoV-2 Genome Browser. Nature Genetics, 2020, 52, 991-998.	21.4	79
53	UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics, 2016, 32, 1430-1432.	4.1	78
54	Federated discovery and sharing of genomic data using Beacons. Nature Biotechnology, 2019, 37, 220-224.	17.5	75

#	Article	IF	CITATIONS
55	A Daily-Updated Database and Tools for Comprehensive SARS-CoV-2 Mutation-Annotated Trees. Molecular Biology and Evolution, 2021, 38, 5819-5824.	8.9	69
56	TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal. Cancer Research, 2017, 77, e111-e114.	0.9	59
57	Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria. Molecular Biology and Evolution, 2015, 32, 23-28.	8.9	57
58	Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes. Stem Cell Reports, 2019, 12, 245-257.	4.8	53
59	Navigating protected genomics data with UCSC Genome Browser in a Box. Bioinformatics, 2015, 31, 764-766.	4.1	49
60	Building a Pan-Genome Reference for a Population. Journal of Computational Biology, 2015, 22, 387-401.	1.6	48
61	Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection. Genome Biology, 2018, 19, 188.	8.8	42
62	Comparative Tumor RNA Sequencing Analysis for Difficult-to-Treat Pediatric and Young Adult Patients With Cancer. JAMA Network Open, 2019, 2, e1913968.	5.9	38
63	A Recurrent Mutation in Anaplastic Lymphoma Kinase with Distinct Neoepitope Conformations. Frontiers in Immunology, 2018, 9, 99.	4.8	35
64	Comparative assembly hubs: Web-accessible browsers for comparative genomics. Bioinformatics, 2014, 30, 3293-3301.	4.1	33
65	The NIH BD2K center for big data in translational genomics. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1143-1147.	4.4	30
66	Blockchain-Authenticated Sharing of Genomic and Clinical Outcomes Data of Patients With Cancer: A Prospective Cohort Study. Journal of Medical Internet Research, 2020, 22, e16810.	4.3	29
67	A user guide for the online exploration and visualization of PCAWG data. Nature Communications, 2020, 11, 3400.	12.8	23
68	Picroscope: low-cost system for simultaneous longitudinal biological imaging. Communications Biology, 2021, 4, 1261.	4.4	23
69	Barriers to accessing public cancer genomic data. Scientific Data, 2019, 6, 98.	5.3	22
70	Positive selection in noncoding genomic regions of vocal learning birds is associated with genes implicated in vocal learning and speech functions in humans. Genome Research, 2021, 31, 2035-2049.	5.5	16
71	The birds of Genome10K. GigaScience, 2014, 3, 32.	6.4	15
72	ProTECT—Prediction of T-Cell Epitopes for Cancer Therapy. Frontiers in Immunology, 2020, 11, 483296.	4.8	14

#	Article	IF	CITATIONS
73	A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci. Genome Research, 2022, 32, 656-670.	5.5	13
74	Low cost cloud based remote microscopy for biological sciences. Internet of Things (Netherlands), 2022, 18, 100454.	7.7	12
75	Cancer microenvironment and genomics: evolution in process. Clinical and Experimental Metastasis, 2022, 39, 85-99.	3.3	11
76	Spiking neural state machine for gait frequency entrainment in a flexible modular robot. PLoS ONE, 2020, 15, e0240267.	2.5	9
77	ldentification of a differentiation stall in epithelial mesenchymal transition in histone H3–mutant diffuse midline glioma. GigaScience, 2020, 9, .	6.4	8
78	Neuromorphic Closed-Loop Control of a Flexible Modular Robot by a Simulated Spiking Central Pattern Generator. , 2020, , .		8
79	Light-weight electrophysiology hardware and software platform for cloud-based neural recording experiments. Journal of Neural Engineering, 2021, 18, 066004.	3.5	7
80	Representing and decomposing genomic structural variants as balanced integer flows on sequence graphs. BMC Bioinformatics, 2016, 17, 400.	2.6	6
81	The case for using mapped exonic non-duplicate reads when reporting RNA-sequencing depth: examples from pediatric cancer datasets. GigaScience, 2021, 10, .	6.4	2
82	Hydra: A mixture modeling framework for subtyping pediatric cancer cohorts using multimodal gene expression signatures. PLoS Computational Biology, 2020, 16, e1007753.	3.2	1
83	The Human Epigenome Browser at Washington University. , 0, .		1
84	Detecting the Coevolution in and among Protein Domains. PLoS Computational Biology, 2005, preprint, e211.	3.2	1
85	Computing how we became human. , 2008, , .		0
86	Title is missing!. , 2020, 16, e1007753.		0
87	Title is missing!. , 2020, 16, e1007753.		0
88	Title is missing!. , 2020, 16, e1007753.		0
89	Spiking neural state machine for gait frequency entrainment in a flexible modular robot. , 2020, 15, e0240267.		0
90	Spiking neural state machine for gait frequency entrainment in a flexible modular robot. , 2020, 15, e0240267.		0

#	Article	IF	CITATIONS
91	Spiking neural state machine for gait frequency entrainment in a flexible modular robot. , 2020, 15, e0240267.		0
92	Spiking neural state machine for gait frequency entrainment in a flexible modular robot. , 2020, 15, e0240267.		0