List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Omics of endothelial cell dysfunction in sepsis. Vascular Biology (Bristol, England), 2022, 4, R15-R34.	3.2	11
2	Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiotherapy and Oncology, 2021, 158, 21-32.	0.6	56
3	Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. International Journal of Molecular Sciences, 2021, 22, 7770.	4.1	19
4	A Microphysiological System to Study Leukocyte-Endothelial Cell Interaction during Inflammation. Journal of Visualized Experiments, 2021, , .	0.3	4
5	Neutrophilâ€endothelial interactions of murine cells is not a good predictor of their interactions in human cells. FASEB Journal, 2020, 34, 2691-2702.	0.5	12
6	Experimental Approaches to Evaluate Leukocyte–Endothelial Cell Interactions in Sepsis and Inflammation. Shock, 2020, 53, 585-595.	2.1	12
7	The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. International Journal of Molecular Sciences, 2019, 20, 1498.	4.1	33
8	Drug Development Pipeline Running Low, Whatâ \in $^{ m Ms}$ Data Got to Do with It?. , 2019, , .		0
9	Reversible Cavitationâ€Induced Junctional Opening in an Artificial Endothelial Layer. Small, 2019, 15, e1905375.	10.0	27
10	Protein Kinase C-Delta (PKCÎ) Tyrosine Phosphorylation is a Critical Regulator of Neutrophil-Endothelial Cell Interaction in Inflammation. Shock, 2019, 51, 538-547.	2.1	27
11	Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage. Journal of Neuroinflammation, 2018, 15, 309.	7.2	56
12	PKCÎ′ inhibition as a novel medical countermeasure for radiationâ€induced vascular damage. FASEB Journal, 2018, 32, 6436-6444.	0.5	14
13	Fourier Transform Infrared Spectroscopic Imaging-Derived Collagen Content and Maturity Correlates with Stress in the Aortic Wall of Abdominal Aortic Aneurysm Patients. Cardiovascular Engineering and Technology, 2017, 8, 70-80.	1.6	5
14	Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS ONE, 2017, 12, e0185250.	2.5	23
15	A Biomimetic Microfluidic Tumor Microenvironment Platform Mimicking the EPR Effect for Rapid Screening of Drug Delivery Systems. Scientific Reports, 2017, 7, 9359.	3.3	79
16	Targeted multidrug delivery system to overcome chemoresistance in breast cancer. International Journal of Nanomedicine, 2017, Volume 12, 671-681.	6.7	46
17	A novel microfluidic assay reveals a key role for protein kinase C Î′ in regulating human neutrophil–endothelium interaction. Journal of Leukocyte Biology, 2016, 100, 1027-1035.	3.3	32
18	Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer. Clinical Breast Cancer, 2016, 16, 335-343.	2.4	193

#	Article	IF	CITATIONS
19	A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip. PLoS ONE, 2015, 10, e0142725.	2.5	149
20	Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvascular Research, 2015, 99, 19-25.	2.5	34
21	Correlations between transmural mechanical and morphological properties in porcine thoracic descending aorta. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 12-20.	3.1	12
22	Fast, Stable Induction of P-Glycoprotein-mediated Drug Resistance in BT-474 Breast Cancer Cells by Stable Transfection of ABCB1 Gene. Anticancer Research, 2015, 35, 2531-8.	1.1	7
23	Targeted delivery of vascular endothelial growth factor improves stem cell therapy in a rat myocardial infarction model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1711-1718.	3.3	30
24	Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta. Analyst, The, 2014, 139, 3039-3047.	3.5	29
25	Bioinspired Microfluidic Assay for In Vitro Modeling of Leukocyte–Endothelium Interactions. Analytical Chemistry, 2014, 86, 8344-8351.	6.5	48
26	Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Microvascular Research, 2013, 89, 107-114.	2.5	36
27	Engineering a General Education Program: Designing Mechanical Engineering General Education Courses. Innovative Higher Education, 2013, 38, 117-128.	2.5	4
28	Adhesive Interaction of Functionalized Particles and Endothelium in Idealized Microvascular Networks. FASEB Journal, 2013, 27, lb641.	0.5	0
29	Targeted delivery of vascular endothelial growth factor to enhance the stem cell therapy in treating myocardial infarction in rats. , 2012, , .		Ο
30	Cholesterol Superlattice Modulates CA4P Release from Liposomes and CA4P Cytotoxicity on Mammary Cancer Cells. Biophysical Journal, 2012, 102, 2086-2094.	0.5	21
31	Targeted Delivery of VEGF after a Myocardial Infarction Reduces Collagen Deposition and Improves Cardiac Function. Cardiovascular Engineering and Technology, 2012, 3, 237-247.	1.6	24
32	Microfluidic devices for modeling cell–cell and particle–cell interactions in the microvasculature. Microvascular Research, 2011, 82, 210-220.	2.5	79
33	Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks. Microcirculation, 2011, 18, 380-389.	1.8	32
34	Low-Volume Binary Drug Therapy for the Treatment of Hypovolemia. Shock, 2011, 35, 590-596.	2.1	3
35	In vitro characterization of a dualâ€receptor targeted drug delivery system for treating vascular diseases. FASEB Journal, 2011, 25, lb441.	0.5	0
36	Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer. Expert Opinion on Drug Delivery, 2010, 7, 1159-1173.	5.0	32

#	Article	IF	CITATIONS
37	Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvascular Research, 2010, 80, 384-388.	2.5	32
38	Targeted VEGF Therapy Favorably Alters Collagen Deposition and Quality after Myocardial Infarction. FASEB Journal, 2010, 24, 1031.7.	0.5	2
39	Targeting VECFâ€encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB Journal, 2009, 23, 3361-3367.	0.5	129
40	A physiologically realistic in vitro model of microvascular networks. Biomedical Microdevices, 2009, 11, 1051-1057.	2.8	80
41	Radiation-Guided Targeting of Combretastatin Encapsulated Immunoliposomes to Mammary Tumors. Pharmaceutical Research, 2009, 26, 1093-1100.	3.5	35
42	Combretastatin A4 Disodium Phosphate Forms Aggregates In Solution Leading To Exciton Transfer. Biophysical Journal, 2009, 96, 401a.	0.5	0
43	Engineering Cardiac Tissue Using Stem Cell Therapy to Mend the Broken Heart. , 2009, , .		Ο
44	Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomedical Microdevices, 2008, 10, 585-595.	2.8	64
45	Drug Development-targeted Screening of Leptin Agonist Glycopeptides. International Journal of Peptide Research and Therapeutics, 2008, 14, 247-254.	1.9	6
46	Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue. Expert Opinion on Drug Delivery, 2008, 5, 459-470.	5.0	60
47	Modeling Oxygenation and Selective Delivery of Drug Carriers Post-Myocardial Infarction. , 2008, 614, 333-343.		6
48	Targeted delivery of antibody conjugated liposomal drug carriers to rat myocardial infarction. Biotechnology and Bioengineering, 2007, 96, 795-802.	3.3	54
49	Microvascular network on a PDMS chip: endothelial cell growth and microsphere adhesion. FASEB Journal, 2007, 21, A493.	0.5	0
50	A tumor vasculature targeted liposome delivery system for combretastatin A4: Design, characterization, and in vitro evaluation. AAPS PharmSciTech, 2006, 7, E7-E16.	3.3	69
51	Myocardial Oxygenation in Infarcted Hearts Predicted by a Microvascular Transport Model. FASEB Journal, 2006, 20, A713.	0.5	0
52	A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies. PDA Journal of Pharmaceutical Science and Technology, 2006, 60, 144-55.	0.5	24
53	Targeting of the Antivascular Drug Combretastatin to Irradiated Tumors Results in Tumor Growth Delay. Pharmaceutical Research, 2005, 22, 1117-1120.	3.5	51
54	An intravital microscopy study of radiation-induced changes in permeability and leukocyte–endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle. Brain Research Protocols, 2004, 13, 1-10.	1.6	56

#	Article	IF	CITATIONS
55	Radiation-induced permeability and leukocyte adhesion in the rat blood–brain barrier: modulation with anti-ICAM-1 antibodies. Brain Research, 2003, 969, 59-69.	2.2	163
56	Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15895-15900.	7.1	161
57	Oxygen Delivery in Irradiated Normal Tissue. Journal of Radiation Research, 2003, 44, 15-21.	1.6	12
58	Dysfunctional Microvascular Conducted Response in Irradiated Normal Tissue. Advances in Experimental Medicine and Biology, 2003, 510, 391-395.	1.6	6
59	Aldosteronism in Heart Failure: A Proinflammatory / Fibrogenic Cardiac Phenotype. Search for Biomarkers and Potential Drug Targets. Current Drug Targets, 2003, 4, 505-516.	2.1	41
60	The N-terminal peptide of PSGL-1 can mediate adhesion to trauma-activated endothelium via P-selectin in vivo. Blood, 2002, 100, 531-538.	1.4	33
61	Infarct scar as living tissue. Basic Research in Cardiology, 2002, 97, 343-347.	5.9	183
62	Targeting microparticles to select tissue via radiation-induced upregulation of endothelial cell adhesion molecules. Pharmaceutical Research, 2002, 19, 1317-1322.	3.5	50
63	Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharmaceutical Research, 2001, 18, 23-28.	3.5	92
64	Expression and Functional Significance of Adhesion Molecules on Cultured Endothelial Cells in Response to Ionizing Radiation. Microcirculation, 2001, 8, 355-364.	1.8	53
65	Expression and Functional Significance of Adhesion Molecules on Cultured Endothelial Cells in Response to Ionizing Radiation. Microcirculation, 2001, 8, 355-364.	1.8	22
66	Expression and Functional Significance of Adhesion Molecules on Cultured Endothelial Cells in Response to Ionizing Radiation. Microcirculation, 2001, 8, 355-364.	1.8	1
67	Late Effects of Ionizing Radiation on the Microvascular Networks in Normal Tissue. Radiation Research, 2000, 154, 531-536.	1.5	63
68	A "Geographic Information Systems―Based Technique for the Study of Microvascular Networks. Annals of Biomedical Engineering, 1999, 27, 42-47.	2.5	21
69	Early Effects of Ionizing Radiation on the Microvascular Networks in Normal Tissue. Radiation Research, 1999, 151, 270.	1.5	84
70	Effects of ionizing radiation on the adhesive interaction of human tumor and endothelial cells in vitro. Clinical and Experimental Metastasis, 1996, 15, 12-18.	3.3	8
71	Additional Pressure Drop at a Bifurcation Due to the Passage of Flexible Disks in a Large Scale Model. Journal of Biomechanical Engineering, 1994, 116, 497-501.	1.3	5
72	Effect of Diameter Variability along a Microvessel Segment on Pressure Drop. Microvascular Research, 1993, 45, 219-232.	2.5	28

#	Article	IF	CITATIONS
73	A semi-empirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit. Biorheology, 1991, 28, 65-73.	0.4	34
74	Computer simulation of growth of anastomosing microvascular networks. Journal of Theoretical Biology, 1991, 150, 547-560.	1.7	34
75	Oxygen sensitivity of recessed and unrecessed antimony pH microelectrodes. Medical and Biological Engineering and Computing, 1989, 27, 638-640.	2.8	1
76	Computer Simulation of Cerebral Microhemodynamics. Advances in Experimental Medicine and Biology, 1989, 248, 293-304.	1.6	8