DamiÃ;n Monllor-Satoca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/791482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts, 2021, 11, 349.	1.6	7
2	Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chemical Communications, 2020, 56, 12272-12289.	2.2	24
3	Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nature Communications, 2020, 11, 967.	5.8	66
4	Enhanced photoelectrochemical and hydrogen production activity of aligned CdS nanowire with anisotropic transport properties. Applied Surface Science, 2019, 463, 339-347.	3.1	37
5	Homogeneous photocatalytic Fe3+/Fe2+ redox cycle for simultaneous Cr(VI) reduction and organic pollutant oxidation: Roles of hydroxyl radical and degradation intermediates. Journal of Hazardous Materials, 2019, 372, 121-128.	6.5	82
6	Hydrogenation and Structuration of TiO ₂ Nanorod Photoanodes: Doping Level and the Effect of Illumination in Trap-States Filling. Journal of Physical Chemistry C, 2018, 122, 3295-3304.	1.5	18
7	Electrochemical Doping as a Way to Enhance Water Photooxidation on Nanostructured Nickel Titanate and Anatase Electrodes. ChemElectroChem, 2017, 4, 1429-1435.	1.7	4
8	Temperature-boosted photocatalytic H2 production and charge transfer kinetics on TiO2 under UV and visible light. Photochemical and Photobiological Sciences, 2016, 15, 1247-1253.	1.6	23
9	Tailoring Multilayered BiVO ₄ Photoanodes by Pulsed Laser Deposition for Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 4076-4085.	4.0	71
10	Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high faradaic efficiency. Applied Catalysis B: Environmental, 2016, 189, 133-140.	10.8	72
11	What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy and Environmental Science, 2015, 8, 3242-3254.	15.6	147
12	N-doped TiO ₂ nanotubes coated with a thin TaO _x N _y layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy and Environmental Science, 2015, 8, 247-257.	15.6	155
13	Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Applied Catalysis B: Environmental, 2014, 152-153, 233-240.	10.8	91
14	Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy and Environmental Science, 2013, 6, 3732.	15.6	134
15	Tuning the Fermi Level and the Kinetics of Surface States of TiO ₂ Nanorods by Means of Ammonia Treatments. Journal of Physical Chemistry C, 2013, 117, 20517-20524.	1.5	59
16	Photooxidation of Arsenite under 254 nm Irradiation with a Quantum Yield Higher than Unity. Environmental Science & Technology, 2013, 47, 9381-9387.	4.6	70
17	Band energy levels and compositions of CdS-based solid solution and their relation with photocatalytic activities. Catalysis Science and Technology, 2013, 3, 1790.	2.1	22
18	Role of Interparticle Charge Transfers in Agglomerated Photocatalyst Nanoparticles: Demonstration in Aqueous Suspension of Dye-Sensitized TiO ₂ . Journal of Physical Chemistry Letters, 2013, 4, 189-194.	2.1	93

#	Article	IF	CITATIONS
19	Solar Photoconversion Using Graphene/TiO ₂ Composites: Nanographene Shell on TiO ₂ Core versus TiO ₂ Nanoparticles on Graphene Sheet. Journal of Physical Chemistry C, 2012, 116, 1535-1543.	1.5	292
20	Concentration-Dependent Photoredox Conversion of As(III)/As(V) on Illuminated Titanium Dioxide Electrodes. Environmental Science & Technology, 2012, 46, 5519-5527.	4.6	32
21	Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy and Environmental Science, 2012, 5, 7647.	15.6	236
22	The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem, 2012, 13, 2824-2875.	1.0	239
23	Comment on "Photocatalytic Oxidation of Arsenite over TiO ₂ : Is Superoxide the Main Oxidant in Normal Air-Saturated Aqueous Solutions?â€: Environmental Science & Technology, 2011, 45, 9816-9817.	4.6	2
24	Response to Comment on "Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species― Environmental Science & Technology, 2011, 45, 2030-2031.	4.6	7
25	Effect of Surface Fluorination on the Electrochemical and Photoelectrocatalytic Properties of Nanoporous Titanium Dioxide Electrodes. Langmuir, 2011, 27, 15312-15321.	1.6	55
26	A photoelectrochemical and spectroscopic study of phenol and catechol oxidation on titanium dioxide nanoporous electrodes. Electrochimica Acta, 2010, 55, 4661-4668.	2.6	18
27	Electrochemical Method for Studying the Kinetics of Electron Recombination and Transfer Reactions in Heterogeneous Photocatalysis:  The Effect of Fluorination on TiO ₂ Nanoporous Layers. Journal of Physical Chemistry C, 2008, 112, 139-147.	1.5	82
28	Thin Films of Rutile Quantum-size Nanowires as Electrodes: Photoelectrochemical Studies. Journal of Physical Chemistry C, 2008, 112, 15920-15928.	1.5	36
29	An Electrochemical Study on the Nature of Trap States in Nanocrystalline Rutile Thin Films. Journal of Physical Chemistry C, 2007, 111, 9936-9942.	1.5	117
30	The electrochemistry of transparent quantum size rutile nanowire thin films prepared by one-step low temperature chemical bath deposition. Chemical Physics Letters, 2007, 447, 91-95.	1.2	22
31	Photocatalytic behavior of suspended and supported semiconductor particles in aqueous media: Fundamental aspects using catechol as model molecule. Catalysis Today, 2007, 129, 86-95.	2.2	19
32	The "Direct–Indirect―model: An alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catalysis Today, 2007, 129, 247-255.	2.2	146
33	Charge transfer reductive doping of nanostructured TiO2 thin films as a way to improve their photoelectrocatalytic performance. Electrochemistry Communications, 2006, 8, 1713-1718.	2.3	89
34	Determination of electron diffusion lengths in nanostructured oxide electrodes from photopotential maps obtained with the scanning microscope for semiconductor characterization. Electrochemistry Communications, 2006, 8, 1784-1790.	2.3	19
35	Photoelectrochemical Behavior of Nanostructured WO3 Thin-Film Electrodes: The Oxidation of Formic Acid. ChemPhysChem, 2006, 7, 2540-2551.	1.0	65
36	Comment on "Flat band potential determination: avoiding the pitfalls―by A. Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz and G. H. Kelsall, <i>J. Mater. Chem. A</i> , 2019, 7 , 26162. Journal of Materials Chemistry A, 0, , .	5.2	1