
Simon Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914752/publications.pdf Version: 2024-02-01

SIMON COOK

#	Article	IF	CITATIONS
1	A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 2021, 373, 300-306.	6.0	304
2	Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth-Science Reviews, 2012, 115, 332-372.	4.0	140
3	Heterogeneity in Karakoram glacier surges. Journal of Geophysical Research F: Earth Surface, 2015, 120, 128-1300.	1.0	119
4	Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics, 2015, 3, 559-575.	1.0	94
5	Glacier change and glacial lake outburst flood risk inÂtheÂBolivianÂAndes. Cryosphere, 2016, 10, 2399-2413.	1.5	93
6	lce-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology, 2016, 258, 1-10.	1.1	76
7	The empirical basis for modelling glacial erosion rates. Nature Communications, 2020, 11, 759.	5.8	60
8	Basal ice facies: a review and unifying approach. Quaternary Science Reviews, 2009, 28, 1956-1969.	1.4	48
9	Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes. Science of the Total Environment, 2018, 621, 1453-1466.	3.9	45
10	Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Scientific Reports, 2021, 11, 24284.	1.6	45
11	Sedimentary and tectonic architecture of a large push moraine: a case study from HagafellsjĶkull-Eystri, Iceland. Sedimentary Geology, 2004, 172, 269-292.	1.0	41
12	Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution. Quaternary Science Reviews, 2016, 148, 128-145.	1.4	39
13	Modelling glacial lake outburst flood impacts in the Bolivian Andes. Natural Hazards, 2018, 94, 1415-1438.	1.6	38
14	Glaciohydraulic supercooling: the process and its significance. Progress in Physical Geography, 2006, 30, 577-588.	1.4	37
15	The geography of basal ice and its relationship to glaciohydraulic supercooling: SvÃnafellsjökull, southeast Iceland. Quaternary Science Reviews, 2007, 26, 2309-2315.	1.4	32
16	Role of glaciohydraulic supercooling in the formation of stratified facies basal ice: SvÃnafellsjökull and Skaftafellsjökull, southeast Iceland. Boreas, 2010, 39, 24-38.	1.2	30
17	Evolution of high-Arctic glacial landforms during deglaciation. Geomorphology, 2018, 311, 63-75.	1.1	28
18	Subglacial deformation at sub-freezing temperatures? Evidence from Hagafellsjökull-Eystri, Iceland. Quaternary Science Reviews, 2003, 22, 915-923.	1.4	24

SIMON COOK

#	Article	IF	CITATIONS
19	Terminal zone glacial sediment transfer at a temperate overdeepened glacier system. Quaternary Science Reviews, 2018, 180, 111-131.	1.4	23
20	Origin, evolution and dynamic context of a Neoglacial lateral–frontal moraine at Austre Lovénbreen, Svalbard. Geomorphology, 2013, 198, 96-106.	1.1	21
21	Modelling climate change impact on water resources of the Upper Indus Basin. Journal of Water and Climate Change, 2022, 13, 482-504.	1.2	21
22	Geomorphological consequences of a glacier advance across a paraglacial rock avalanche deposit. Geomorphology, 2013, 189, 109-120.	1.1	19
23	Geomorphology and geological controls of an active paraglacial rockslide in the New Zealand Southern Alps. Landslides, 2020, 17, 755-776.	2.7	19
24	Sedimentary signatures of basal ice formation and their preservation in ice-marginal sediments. Geomorphology, 2011, 125, 122-131.	1.1	17
25	160 glacial lake outburst floods (GLOFs) across the Tropical Andes since the Little Ice Age. Global and Planetary Change, 2022, 208, 103722.	1.6	16
26	Origin and significance of â€~dispersed facies' basal ice: SvÃnafellsjökull, Iceland. Journal of Glaciology, 2011, 57, 710-720.	1.1	15
27	Mass balance and surface evolution of the debris-covered Miage Glacier, 1990–2018. Geomorphology, 2021, 373, 107474.	1.1	12
28	Geomorphology of the Rees Valley, Otago, New Zealand. Journal of Maps, 2014, 10, 136-150.	1.0	10
29	Automated mapping of glacial overdeepenings beneath contemporary ice sheets: Approaches and potential applications. Geomorphology, 2015, 232, 209-223.	1.1	10
30	Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility. Water (Switzerland), 2020, 12, 2664.	1.2	10
31	Geomorphological investigation of multiphase glacitectonic composite ridge systems in Svalbard. Geomorphology, 2018, 300, 176-188.	1.1	9
32	Ice and Snow as Land-Forming Agents. , 2015, , 167-199.		7
33	The hydrology of glacierâ€bed overdeepenings: Sediment transport mechanics, drainage system morphology, and geomorphological implications. Earth Surface Processes and Landforms, 2021, 46, 2264-2278.	1.2	7
34	Thrust faulting in glaciers? Reâ€examination of debris bands near the margin of Storglaciäen, Sweden. Boreas, 2022, 51, 78-99.	1.2	7
35	Building bridges between experts and the public: a comparison of two-way communication formats for flooding and air pollution risk. Geoscience Communication, 2019, 2, 39-53.	0.5	6
36	Laboratory observations of sediment entrainment by freezing supercooled water. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 351-362.	0.6	5

SIMON COOK

#	Article	IF	Citations
37	Origin and age of The Hillocks and implications for postâ€glacial landscape development in the upper Lake Wakatipu catchment, New Zealand. Journal of Quaternary Science, 2019, 34, 685-696.	1.1	4
38	Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminutionâ€derived hydrogen. MicrobiologyOpen, 2021, 10, e1200.	1.2	3
39	Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance. Natural Hazards, 2021, 109, 1959-1980.	1.6	3
40	Editorial: Geohazards and Risks in High Mountain Regions. Frontiers in Earth Science, 2021, 9, .	0.8	3
41	Give me five! – reasons for two-way communication between experts and citizens in relation to air pollution risk. Advances in Science and Research, 0, 15, 45-50.	1.0	3
42	Ice and snow as land-forming agents. , 2021, , 165-198.		2
43	Glaciological and geomorphological impacts of terminal overdeepenings: evidence from two Icelandic glaciers. Quaternary International, 2012, 279-280, 97.	0.7	О
44	Supercooled Water. Encyclopedia of Earth Sciences Series, 2011, , 1108-1112.	0.1	0