Paul B Laursen

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7914550/publications.pdf
Version: 2024-02-01

High-Intensity Interval Training, Solutions to the Programming Puzzle. Sports Medicine, 2013, 43,
$313-338$.

2 The Scientific Basis for High-Intensity Interval Training. Sports Medicine, 2002, 32, 53-73.
3.1

Describing and Understanding PacingÂStrategiesÂduring AthleticÂCompetition. Sports Medicine, 2008, 38, 239-252.

Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Medicine, 2013, 43, 773-781.
3.1

Models to Explain Fatigue during Prolonged Endurance Cycling. Sports Medicine, 2005, 35, 865-898.
3.1

Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7
6 Chest Strap, and Electrocardiography. International Journal of Sports Physiology and Performance, 2017, 12, 1324-1328.
Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case
comparison. European Journal of Applied Physiology, 2012, 112, 3729-3741.

8 Supramaximal Training and Postexercise Parasympathetic Reactivation in Adolescents. Medicine and Science in Sports and Exercise, 2008, 40, 362-371.
0.2

181

9 Interval training program optimization in highly trained endurance cyclists. Medicine and Science in
Sports and Exercise, 2002, 34, 1801-1807.

Reliability of Time-to-Exhaustion versus Time-Trial Running Tests in Runners. Medicine and Science in
Sports and Exercise, 2007, 39, 1374-1379.

Changes in markers of muscle damage, inflammation and HSP70 after an Ironman triathlon race.
European Journal of Applied Physiology, 2006, 98, 525-534.

Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. Journal of Sports Sciences, 2012, 30, 155-165.

Monitoring Training With Heart-Rate Variability: How Much Compliance Is Needed for Valid
Assessment?. International Journal of Sports Physiology and Performance, 2014, 9, 783-790.

Evaluating Training Adaptation With Heart-Rate Measures: A Methodological Comparison. International Journal of Sports Physiology and Performance, 2013, 8, 688-691.
1.1

107

15 Precooling Methods and Their Effects on Athletic Performance. Sports Medicine, 2013, 43, 207-225.
3.1

104

16 Cooling Athletes before Competition in the Heat. Sports Medicine, 2006, 36, 671-682.
3.1

93

17 Keeping Your Cool. Sports Medicine, 2012, 42, 89-98.
3.1

91
19
20

From Lab to Real World: Heat Acclimation Considerations for Elite Athletes. Sports Medicine, 2017, 47, 1467-1476.
3.1

82

Physiological Responses to Cold Water Immersion Following Cycling in the Heat. International
1.1 Journal of Sports Physiology and Performance, 2008, 3, 331-346.

78
21

Heart-Rate Variability and Training-Intensity Distribution in Elite Rowers. International Journal of
1.1 Sports Physiology and Performance, 2014, 9, 1026-1032.
23
2

Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue. Journal of Applied Physiology, 2012, 112, 1335-1344.
1.2

71
Effect of cold-water immersion duration on body temperature and muscle function. Journal of Sports
$1.0 \quad 73$
Current hydration guidelines are erroneous: dehydration does not impair exercise performance in the
heat. British Journal of Sports Medicine, 2015, 49, 1077-1083.

Body temperature and its effect on leukocyte mobilization, cytokines and markers of neutrophil activation during and after exercise. European Journal of Applied Physiology, 2008, 102, 391-401.

Maximising performance in triathlon: Applied physiological and nutritional aspects of elite and
non-elite competitions. Journal of Science and Medicine in Sport, 2008, 11, 407-416.
$28 \quad \begin{aligned} & \text { Performance and physiological responses during a sprint interval training session: relationships with } \\ & \text { muscle oxygenation and pulmonary oxygen uptake kinetics. European Journal of Applied Physiology, }\end{aligned}$ 2012, 112, 767-779.
Practical precooling: Effect on cycling time trial performance in warm conditions. Journal of Sports
Sciences, 2008, 26, 1477-1487.
Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and
30 metabolic profile of trained skeletal muscle. Journal of Applied Physiology, 2011, 110, 1248-1255.
1.2

59
Nocturnal Heart Rate Variability Following Supramaximal Intermittent Exercise. International Journal
of Sports Physiology and Performance, 2009, 4, 435-447.
$1.1 \quad 58$ of Sports Physiology and Performance, 2009, 4, 435-447.

Acute High-Intensity Interval Training Improves T_{vent} and Peak Power Output in Highly Trained Males. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 336-348.
1.7

56

Effect of cold or thermoneutral water immersion on post-exercise heart rate recovery and heart rate
1.4

55
33 variability indices. Autonomic Neuroscience: Basic and Clinical, 2010, 156, 111-116.

Dynamic Pacing Strategies during the Cycle Phase of an Ironman Triathlon. Medicine and Science in
Sports and Exercise, 2006, 38, 726-734.

> Relationship of exercise test variables to cycling performance in an Ironman triathlon. European
> Journal of Applied Physiology, 2002, 87, 433-440.
Effect of cold water immersion on repeated 1-km cycling performance in the heat. Journal of Science
and Medicine in Sport, 2010, 13, 112-116.

40 Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clinical Physiology and Functional Imaging, 2011, 31, 337-346.
0.5
47 Anaerobic Speed/Power Reserve and Sport Performance: Scientific Basis, Current Applications and Future Directions. Sports Medicine, 2021, 51, 2017-2028.
$3.1 \quad 37$
48 The effect of 1,3-butanediol and carbohydrate supplementation on running performance. Journal of Science and Medicine in Sport, 2019, 22, 702-706.

The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced
63 A comparison of the cycling performance of cyclists and triathletes. Journal of Sports Sciences, 2003,21, 411-418.
$1.0 \quad 22$
65 Reproducibility of the Cycling Time to Exhaustion at in Highly Trained Cyclists. Applied Physiology, Nutrition, and Metabolism, 2003, 28, 605-615.
20Hyperthermic-induced hyperventilation and associated respiratory alkalosis in humans. EuropeanJournal of Applied Physiology, 2007, 100, 63-69.
1.220Implementing Anaerobic Speed Reserve Testing in the Field: Validation of VVO 2 max Prediction From67 1500-m Race Performance in Elite Middle-Distance Runners. International Journal of Sports Physiology1.1
73
Periodizing heat acclimation in elite Laser sailors preparing for a world championship event in hot conditions. Temperature, 2016, 3, 437-443.
1.7 15

Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise
74 training in healthy individuals: A non-randomized, parallel design study. Nutrition Research, 2021, 87,
1.3

15 22-30.

75 Is part of the mystery surrounding fatigue complicated by context?. Journal of Science and Medicine in Sport, 2007, 10, 277-279.
$0.6 \quad 14$

Acute physiological and perceptual responses to wearing additional clothing while cycling outdoors 76 in a temperate environment:A practical method to increase the heat load. Temperature, 2017, 4, 414-419.
1.7

14
$77 \quad$ The Effect of Dietary Nitrate Supplementation on Physiology and Performance in Trained Cyclists.
$1.1 \quad 14$
International Journal of Sports Physiology and Performance, 2017, 12, 684-689.
14

78 Revisiting the Global Overfat Pandemic. Frontiers in Public Health, 2020, 8, 51.
1.3

Fluid Balance, Carbohydrate Ingestion, and Body Temperature During Menâ $€^{\mathrm{TM}_{s}}$ Stage-Race Cycling in
79 Temperate Environmental Conditions. International Journal of Sports Physiology and Performance,
2014, 9, 575-582.

80 Human Performance in Motorcycle Road Racing: A Review of the Literature. Sports Medicine, 2018, 48, 1345-1356.
3.1

13

```
81 Incidence of exercise-induced arterial hypoxemia in prepubescent females. Pediatric Pulmonology,
81 2002, 34, 37-41.
```

$1.0 \quad 12$

Temporal Aspects of the $\mathrm{VO}<$ sub $>2</$ sub $>$ Response at the Power Output Associated with
$82 V \mathrm{VO}$ ₂peak in Well Trained Cyclistsấ $€$ "Implications for Interval Training Prescription.
0.8

12
Research Quarterly for Exercise and Sport, 2004, 75, 423-428.
Profiling the physical load on riders of top-level motorcycle circuit racing. Journal of Sports
Sciences, 2018,36, 1061-1067.

Exercise-induced arterial hypoxemia is not different during cycling and running in triathletes.
84 Scandinavian Journal of Medicine and Science in Sports, 2005, 15, 113-117.
1.3

11

> 85 Effect of in- versus out-of-water recovery on repeated swimming sprint performance. European
> Journal of Applied Physiology, 2010, 108, 321-327.

Effect of ad Libitum Ice-Slurry and Cold-Fluid Ingestion on Cycling Time-Trial Performance in the Heat.
1.1

11
International Journal of Sports Physiology and Performance, 2017, 12, 99-105.

The Effect of Nitrate Supplementation on Cycling Performance in the Heat in Well-Trained Cyclists.
International Journal of Sports Physiology and Performance, 2018, 13, 50-56.
1.1

11

Acclimatisation in trekkers with and without recent exposure to high altitude. European Journal of
Applied Physiology, 2012, 112, 3287-3294.
1.2

10

Oral Presence of Carbohydrate and Caffeine in Chewing Gum: Independent and Combined Effects on
89 Endurance Cycling Performance. International Journal of Sports Physiology and Performance, 2016, 11,
1.1

10
164-171.

