
Stavros Thomopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Scaffolds with a Mineral Gradient and Funnelâ€Shaped Channels for Spatially Controllable Osteogenesis. Advanced Healthcare Materials, 2022, 11, e2100828.	3.9	8
2	The role of loading in murine models of rotator cuff disease. Journal of Orthopaedic Research, 2022, 40, 977-986.	1.2	12
3	Transient neonatal shoulder paralysis causes early osteoarthritis in a mouse model. Journal of Orthopaedic Research, 2022, 40, 1981-1992.	1.2	2
4	Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biology, 2022, 105, 87-103.	1.5	13
5	Mechanically Competent Chitosanâ€Based Bioadhesive for Tendonâ€toâ€Bone Repair. Advanced Healthcare Materials, 2022, 11, e2102344.	3.9	6
6	The use of connective tissue growth factor mimics for flexor tendon repair. Journal of Orthopaedic Research, 2022, 40, 2754-2762.	1.2	1
7	Pegylated insulinâ€like growth factorâ€1 biotherapeutic delivery promotes rotator cuff regeneration in a rat model. Journal of Biomedical Materials Research - Part A, 2022, 110, 1356-1371.	2.1	8
8	Metabolic regulation of intrasynovial flexor tendon repair: The effects of dichloroacetate administration on early tendon healing in a canine model. Journal of Orthopaedic Research, 2022, , .	1.2	2
9	Effects of tendon viscoelasticity on the distribution of forces across sutures in a model of tendon-to-bone repair. International Journal of Solids and Structures, 2022, 250, 111725.	1.3	0
10	Neonatal Enthesis Healing Involves Noninflammatory Acellular Scar Formation through Extracellular Matrix Secretion by Resident Cells. American Journal of Pathology, 2022, 192, 1122-1135.	1.9	1
11	Cyclic strain enhances the early stage mineral nucleation and the modulus of demineralized bone matrix. Biomaterials Science, 2021, 9, 5907-5916.	2.6	9
12	Enhanced Tendon-to-Bone Healing via IKKβ Inhibition in a Rat Rotator Cuff Model. American Journal of Sports Medicine, 2021, 49, 780-789.	1.9	16
13	Flexor Tendon Injury and Repair. Journal of Bone and Joint Surgery - Series A, 2021, 103, e36.	1.4	11
14	Augmenting Tendonâ€ŧoâ€Bone Repair with Functionally Graded Scaffolds. Advanced Healthcare Materials, 2021, 10, e2002269.	3.9	34
15	Toughening mechanisms for the attachment of architectured materials: The mechanics of the tendon enthesis. Science Advances, 2021, 7, eabi5584.	4.7	20
16	Enthesis strength, toughness and stiffness: an image-based model comparing tendon insertions with varying bony attachment geometries. Journal of the Royal Society Interface, 2021, 18, 20210421.	1.5	8
17	<i>In situ</i> tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication, 2020, 12, 015008.	3.7	47
18	Rethinking Patellar Tendinopathy and Partial Patellar Tendon Tears: A Novel Classification System. American Journal of Sports Medicine, 2020, 48, 359-369.	1.9	25

#	Article	IF	CITATIONS
19	Pulsed Electrical Stimulation Enhances Body Fluid Transport for Collagen Biomineralization. ACS Applied Bio Materials, 2020, 3, 902-910.	2.3	7
20	Multiscale effects of spaceflight on murine tendon and bone. Bone, 2020, 131, 115152.	1.4	13
21	Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis. Science Advances, 2020, 6, .	4.7	25
22	Correction of bias in the estimation of cell volume fraction from histology sections. Journal of Biomechanics, 2020, 104, 109705.	0.9	2
23	Connexin 43 Is Necessary for Murine Tendon Enthesis Formation and Response to Loading. Journal of Bone and Mineral Research, 2020, 35, 1494-1503.	3.1	11
24	Direct Estimation of Surface Strain Fields From a Stereo Vision System. Journal of Biomechanical Engineering, 2020, 142, .	0.6	0
25	Biomechanical Testing of Murine Tendons. Journal of Visualized Experiments, 2019, , .	0.2	17
26	Adhesive-based tendon-to-bone repair: failure modelling and materials selection. Journal of the Royal Society Interface, 2019, 16, 20180838.	1.5	9
27	Targeting the NF-Î ^{\circ} B signaling pathway in chronic tendon disease. Science Translational Medicine, 2019, 11, .	5.8	112
28	The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomaterialia, 2019, 83, 302-313.	4.1	52
29	Regularization-Free Strain Mapping in Three Dimensions, With Application to Cardiac Ultrasound. Journal of Biomechanical Engineering, 2019, 141, .	0.6	17
30	The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nature Communications, 2018, 9, 962.	5.8	86
31	Enhanced tendon-to-bone repair through adhesive films. Acta Biomaterialia, 2018, 70, 165-176.	4.1	26
32	Effect of connective tissue growth factor delivered via porous sutures on the proliferative stage of intrasynovial tendon repair. Journal of Orthopaedic Research, 2018, 36, 2052-2063.	1.2	15
33	Design and Fabrication of a Hierarchically Structured Scaffold for Tendonâ€ŧoâ€Bone Repair. Advanced Materials, 2018, 30, e1707306.	11.1	82
34	Integrating soft and hard tissues via interface tissue engineering. Journal of Orthopaedic Research, 2018, 36, 1069-1077.	1.2	103
35	The effect of modified locking methods and suture materials on Zone II flexor tendon repair—An ex vivo study. PLoS ONE, 2018, 13, e0205121.	1.1	8
36	Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 2018, 80, 217-227.	4.1	35

#	Article	IF	CITATIONS
37	Inverse Opal Scaffolds with Gradations in Mineral Content for Spatial Control of Osteogenesis. Advanced Materials, 2018, 30, e1706706.	11.1	30
38	The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model. Scientific Reports, 2018, 8, 11078.	1.6	37
39	Potential strain-dependent mechanisms defining matrix alignment in healing tendons. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1569-1580.	1.4	12
40	Enthesis Repair. Journal of Bone and Joint Surgery - Series A, 2018, 100, e109.	1.4	72
41	Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomaterialia, 2017, 56, 25-35.	4.1	85
42	Enthesis regeneration: a role for Gli1+ progenitor cells. Development (Cambridge), 2017, 144, 1159-1164.	1.2	51
43	Protein-free formation of bone-like apatite: New insights into the key role of carbonation. Biomaterials, 2017, 127, 75-88.	5.7	77
44	Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle. Journal of Orthopaedic Research, 2017, 35, 2808-2814.	1.2	20
45	Combined Administration of ASCs and BMP-12 Promotes an M2 Macrophage Phenotype and Enhances Tendon Healing. Clinical Orthopaedics and Related Research, 2017, 475, 2318-2331.	0.7	63
46	Sclerostin Antibody Treatment Enhances Rotator Cuff Tendon-to-Bone Healing in an Animal Model. Journal of Bone and Joint Surgery - Series A, 2017, 99, 855-864.	1.4	49
47	Toughening of fibrous scaffolds by mobile mineral deposits. Acta Biomaterialia, 2017, 58, 492-501.	4.1	14
48	Unification through disarray. Nature Materials, 2017, 16, 607-608.	13.3	88
49	The fibrous cellular microenvironment, and how cells make sense of a tangled web. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5772-5774.	3.3	12
50	Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 193-202.	1.5	23
51	Targeting Inflammation in Rotator Cuff Tendon Degeneration and Repair. Techniques in Shoulder and Elbow Surgery, 2017, 18, 84-90.	0.2	34
52	Effects of spaceflight on the muscles of the murine shoulder. FASEB Journal, 2017, 31, 5466-5477.	0.2	19
53	Cell and Biologic-Based Treatment of Flexor Tendon Injuries. Operative Techniques in Orthopaedics, 2016, 26, 206-215.	0.2	23
54	<i>In Situ</i> Evaluation of Calcium Phosphate Nucleation Kinetics and Pathways during Intra- and Extrafibrillar Mineralization of Collagen Matrices. Crystal Growth and Design, 2016, 16, 5359-5366.	1.4	34

#	Article	IF	CITATIONS
55	Effect of adiposeâ€derived stromal cells and BMP12 on intrasynovial tendon repair: A biomechanical, biochemical, and proteomics study. Journal of Orthopaedic Research, 2016, 34, 630-640.	1.2	31
56	The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing. Stem Cell Research and Therapy, 2016, 7, 144.	2.4	73
57	Shear Lag Sutures: Improved Suture Repair Through the Use of Adhesives. , 2016, , .		Ο
58	The concentration of stress at the rotator cuff tendon-to-bone attachment site is conserved across species. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 24-32.	1.5	45
59	Surgical Sutures with Porous Sheaths for the Sustained Release of Growth Factors. Advanced Materials, 2016, 28, 4620-4624.	11.1	23
60	Tunability of collagen matrix mechanical properties via multiple modes of mineralization. Interface Focus, 2016, 6, 20150070.	1.5	24
61	Enhanced Zone II Flexor Tendon Repair through a New Half Hitch Loop Suture Configuration. PLoS ONE, 2016, 11, e0153822.	1.1	7
62	A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials. Journal of the Royal Society Interface, 2015, 12, 20150707.	1.5	29
63	Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizerâ€Based Treatment. Advanced Materials, 2015, 27, 2583-2588.	11.1	93
64	Architectural and Biochemical Adaptations in Skeletal Muscle and Bone Following Rotator Cuff Injury in a Rat Model. Journal of Bone and Joint Surgery - Series A, 2015, 97, 565-573.	1.4	15
65	Allometry of the Tendon Enthesis: Mechanisms of Load Transfer Between Tendon and Bone. Journal of Biomechanical Engineering, 2015, 137, 111005.	0.6	52
66	Stochastic Interdigitation as a Toughening Mechanism at the Interface between Tendon and Bone. Biophysical Journal, 2015, 108, 431-437.	0.2	44
67	Mechanisms of tendon injury and repair. Journal of Orthopaedic Research, 2015, 33, 832-839.	1.2	381
68	Shear lag sutures: Improved suture repair through the use of adhesives. Acta Biomaterialia, 2015, 23, 229-239.	4.1	20
69	Effective elastic properties of a composite containing multiple types of anisotropic ellipsoidal inclusions, with application to the attachment of tendon to bone. Journal of the Mechanics and Physics of Solids, 2015, 82, 367-377.	2.3	24
70	Looped Versus Single-Stranded Flexor Tendon Repairs: A Cadaveric Mechanical Study. Journal of Hand Surgery, 2015, 40, 958-962.e1.	0.7	8
71	Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro. Stem Cell Research and Therapy, 2015, 6, 74.	2.4	110
72	<i>In Vivo</i> Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-to-Bone Repair. Tissue Engineering - Part A, 2015, 21, 2766-2774.	1.6	76

#	Article	IF	CITATIONS
73	Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Developmental Biology, 2015, 405, 96-107.	0.9	96
74	Chronic Degeneration Leads to Poor Healing of Repaired Massive Rotator Cuff Tears in Rats. American Journal of Sports Medicine, 2015, 43, 2401-2410.	1.9	69
75	Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development (Cambridge), 2015, 142, 196-206.	1.2	124
76	Deletion of Connexin43 in Osteoblasts/Osteocytes Leads to Impaired Muscle Formation in Mice. Journal of Bone and Mineral Research, 2015, 30, 596-605.	3.1	79
77	The effects of chronic unloading and gap formation on tendon-to-bone healing in a rat model of massive rotator cuff tears. Journal of Orthopaedic Research, 2014, 32, 439-447.	1.2	49
78	Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon injury and neuromuscular compromise in a rat model. Journal of Orthopaedic Research, 2014, 32, 1111-1116.	1.2	55
79	Tendonâ€ŧoâ€bone attachment: From development to maturity. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 101-112.	3.6	146
80	The early inflammatory response after flexor tendon healing: A gene expression and histological analysis. Journal of Orthopaedic Research, 2014, 32, 645-652.	1.2	110
81	Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. Journal of the Royal Society Interface, 2014, 11, 20130835.	1.5	74
82	Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues. Journal of the Royal Society Interface, 2014, 11, 20140685.	1.5	31
83	Stress amplification during development of the tendon-to-bone attachment. Biomechanics and Modeling in Mechanobiology, 2014, 13, 973-983.	1.4	23
84	Nanofiber Scaffolds with Gradients in Mineral Content for Spatial Control of Osteogenesis. ACS Applied Materials & Interfaces, 2014, 6, 2842-2849.	4.0	145
85	The Effect of Suture Caliber and Number of Core Suture Strands on Zone II Flexor Tendon Repair: A Study in Human Cadavers. Journal of Hand Surgery, 2014, 39, 262-268.	0.7	49
86	The developing shoulder has a limited capacity to recover after a short duration of neonatal paralysis. Journal of Biomechanics, 2014, 47, 2314-2320.	0.9	12
87	The effect of age on rat rotator cuff muscle architecture. Journal of Shoulder and Elbow Surgery, 2014, 23, 1786-1791.	1.2	16
88	The Role of Muscle Loading on Bone (Re)modeling at the Developing Enthesis. PLoS ONE, 2014, 9, e97375.	1.1	38
89	Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering. Annual Review of Biomedical Engineering, 2013, 15, 201-226.	5.7	344
90	Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds. Acta Biomaterialia, 2013, 9, 9442-9450.	4.1	53

#	Article	IF	CITATIONS
91	The Challenge of Attaching Dissimilar Materials. , 2013, , 3-17.		3
92	Generation of Controllable Gradients in Cell Density. Angewandte Chemie - International Edition, 2013, 52, 429-432.	7.2	21
93	The Role of Mechanobiology in the Attachment of Tendon to Bone. , 2013, , 229-257.		4
94	BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS ONE, 2013, 8, e77613.	1.1	92
95	Multiscale Optimization of Joints of Dissimilar Materials in Nature and Lessons for Engineering Applications. Advanced Structured Materials, 2013, , 65-75.	0.3	1
96	Tissue-Engineering Strategies for the Tendon/Ligament-to-Bone Insertion. Connective Tissue Research, 2012, 53, 95-105.	1.1	96
97	The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure. Journal of the Royal Society Interface, 2012, 9, 1774-1786.	1.5	125
98	Recent advances in shoulder research. Arthritis Research and Therapy, 2012, 14, 214.	1.6	28
99	The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. Journal of Shoulder and Elbow Surgery, 2012, 21, 847-858.	1.2	119
100	The role of mechanobiology in tendon healing. Journal of Shoulder and Elbow Surgery, 2012, 21, 228-237.	1.2	243
101	The Effect of Core and Epitendinous Suture Modifications on Repair of Intrasynovial Flexor Tendons in an In Vivo Canine Model. Journal of Hand Surgery, 2012, 37, 2526-2531.	0.7	29
102	Mineral Distributions at the Developing Tendon Enthesis. PLoS ONE, 2012, 7, e48630.	1.1	168
103	Intrasynovial flexor tendon repair: A biomechanical study of variations in suture application in human cadavera. Journal of Orthopaedic Research, 2012, 30, 1652-1659.	1.2	33
104	Effect of bone morphogenetic protein 2 on tendonâ€ŧoâ€bone healing in a canine flexor tendon model. Journal of Orthopaedic Research, 2012, 30, 1702-1709.	1.2	33
105	Electrospun Nanofibers for Regenerative Medicine. Advanced Healthcare Materials, 2012, 1, 10-25.	3.9	454
106	Tendon and Ligament Biomechanics. , 2012, , 49-74.		7
107	Fibrocartilage Tissue Engineering: The Role of the Stress Environment on Cell Morphology and Matrix Expression. Tissue Engineering - Part A, 2011, 17, 1039-1053.	1.6	95
108	Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with a Controlled Surface Coating and Mineralization. Langmuir, 2011, 27, 9088-9093.	1.6	104

#	Article	IF	CITATIONS
109	The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connective Tissue Research, 2011, 52, 87-98.	1.1	91
110	Nanofiber Membranes with Controllable Microwells and Structural Cues and Their Use in Forming Cell Microarrays and Neuronal Networks. Small, 2011, 7, 293-297.	5.2	39
111	Effects of botulinum toxinâ€induced paralysis on postnatal development of the supraspinatus muscle. Journal of Orthopaedic Research, 2011, 29, 281-288.	1.2	30
112	Sustained delivery of transforming growth factor beta three enhances tendonâ€ŧoâ€bone healing in a rat model. Journal of Orthopaedic Research, 2011, 29, 1099-1105.	1.2	149
113	The role of mechanobiology in the attachment of tendon to bone. IBMS BoneKEy, 2011, 8, 271-285.	0.1	22
114	Mechanisms of Bimaterial Attachment at the Interface of Tendon to Bone. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	0.8	96
115	The Effects of Exogenous Basic Fibroblast Growth Factor on Intrasynovial Flexor Tendon Healing in a Canine Model. Journal of Bone and Joint Surgery - Series A, 2010, 92, 2285-2293.	1.4	87
116	"Aligned-to-random―nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale, 2010, 2, 923.	2.8	195
117	bFGF and PDGF-BB for Tendon Repair: Controlled Release and Biologic Activity by Tendon Fibroblasts In Vitro. Annals of Biomedical Engineering, 2010, 38, 225-234.	1.3	87
118	Musculoskeletal deformities secondary to neurotomy of the superior trunk of the brachial plexus in neonatal mice. Journal of Orthopaedic Research, 2010, 28, 1391-1398.	1.2	41
119	In Vitro Mineralization by Preosteoblasts in Poly(<scp>dl</scp> -lactide- <i>co</i> -glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles. Langmuir, 2010, 26, 12126-12131.	1.6	71
120	Technical and Biological Modifications for Enhanced Flexor Tendon Repair. Journal of Hand Surgery, 2010, 35, 1031-1037.	0.7	52
121	Contribution of extracellular matrix to the mechanical properties of the heart. Journal of Molecular and Cellular Cardiology, 2010, 48, 490-496.	0.9	200
122	The Nano-Physiology of Mineralized Tissues. , 2009, , .		1
123	Enhanced flexor tendon healing through controlled delivery of PDGFâ€BB. Journal of Orthopaedic Research, 2009, 27, 1209-1215.	1.2	101
124	Complete removal of load is detrimental to rotator cuff healing. Journal of Shoulder and Elbow Surgery, 2009, 18, 669-675.	1.2	135
125	Use of a Magnesium-Based Bone Adhesive for Flexor Tendon-to-Bone Healing. Journal of Hand Surgery, 2009, 34, 1066-1073.	0.7	20
126	Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone. Biophysical Journal, 2009, 97, 976-985.	0.2	290

#	Article	IF	CITATIONS
127	Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site. Nano Letters, 2009, 9, 2763-2768.	4.5	310
128	Recovery Potential After Postnatal Shoulder Paralysis. Journal of Bone and Joint Surgery - Series A, 2009, 91, 879-891.	1.4	41
129	The effect of muscle loading on flexor tendonâ€ŧoâ€bone healing in a canine model. Journal of Orthopaedic Research, 2008, 26, 1611-1617.	1.2	73
130	Controlled-Release Kinetics and Biologic Activity of Platelet-Derived Growth Factor-BB for Use in Flexor Tendon Repair. Journal of Hand Surgery, 2008, 33, 1548-1557.	0.7	55
131	The Tendon-to-Bone Transition of the Rotator Cuff: A Preliminary Raman Spectroscopic Study Documenting the Gradual Mineralization across the Insertion in Rat Tissue Samples. Applied Spectroscopy, 2008, 62, 1285-1294.	1.2	128
132	Collagen Fiber Alignment Does Not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels. Journal of Biomechanical Engineering, 2007, 129, 642-650.	0.6	55
133	The Early Effects of Sustained Platelet-Derived Growth Factor Administration on the Functional and Structural Properties of Repaired Intrasynovial Flexor Tendons: An In Vivo Biomechanic Study at 3 Weeks in Canines. Journal of Hand Surgery, 2007, 32, 373-379.	0.7	66
134	Alendronate prevents bone loss and improves tendon-to-bone repair strength in a canine model. Journal of Orthopaedic Research, 2007, 25, 473-479.	1.2	42
135	Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. Journal of Orthopaedic Research, 2007, 25, 1154-1163.	1.2	129
136	Development of the supraspinatus tendon-to-bone insertion: Localized expression of extracellular matrix and growth factor genes. Journal of Orthopaedic Research, 2007, 25, 1621-1628.	1.2	116
137	PDGF-BB released in tendon repair using a novel delivery system promotes cell proliferation and collagen remodeling. Journal of Orthopaedic Research, 2007, 25, 1358-1368.	1.2	135
138	Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. Journal of Biomechanics, 2006, 39, 1842-1851.	0.9	222
139	Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. Journal of Orthopaedic Research, 2006, 24, 541-550.	1.2	280
140	Early healing of flexor tendon insertion site injuries: Tunnel repair is mechanically and histologically inferior to surface repair in a canine model. Journal of Orthopaedic Research, 2006, 24, 990-1000.	1.2	61
141	Decreased Collagen Organization and Content Are Associated With Reduced Strength of Demineralized and Intact Bone in the SAMP6 Mouse. Journal of Bone and Mineral Research, 2005, 21, 78-88.	3.1	86
142	The Development of Structural and Mechanical Anisotropy in Fibroblast Populated Collagen Gels. Journal of Biomechanical Engineering, 2005, 127, 742-750.	0.6	101
143	Effect of Several Growth Factors on Canine Flexor Tendon Fibroblast Proliferation and Collagen Synthesis In Vitro. Journal of Hand Surgery, 2005, 30, 441-447.	0.7	166
144	Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. Journal of Orthopaedic Research, 2003, 21, 413-419.	1.2	382

#	Article	IF	CITATIONS
145	Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. Journal of Orthopaedic Research, 2003, 21, 413-9.	1.2	199
146	Rotator Cuff Tendinosis in an Animal Model: Role of Extrinsic and Overuse Factors. Annals of Biomedical Engineering, 2002, 30, 1057-1063.	1.3	193
147	The effect of fibrin clot on healing rat supraspinatus tendon defects. Journal of Shoulder and Elbow Surgery, 2002, 11, 239-247.	1.2	73
148	Animal Models of Tendon and Ligament Injuries for Tissue Engineering Applications. Clinical Orthopaedics and Related Research, 1999, 367, S296-S311.	0.7	57
149	The Effects of Overuse Combined With Intrinsic or Extrinsic Alterations in an Animal Model of Rotator Cuff Tendinosis. American Journal of Sports Medicine, 1998, 26, 801-807.	1.9	142