Fengwang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914084/publications.pdf

Version: 2024-02-01

82 papers

11,403 citations

52 h-index 81 g-index

84 all docs

84 docs citations

times ranked

84

8669 citing authors

#	Article	lF	CITATIONS
1	Sustainable Ammonia Synthesis from Nitrogen and Water by Oneâ€6tep Plasma Catalysis. Energy and Environmental Materials, 2023, 6, .	7.3	20
2	Seeing is believing: In-situ visualising dynamic evolution in CO2 electrolysis. Current Opinion in Electrochemistry, 2022, 31, 100846.	2.5	5
3	Molecular Stabilization of Subâ€Nanometer Cu Clusters for Selective CO ₂ Electromethanation. ChemSusChem, 2022, 15, .	3.6	11
4	A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature Communications, 2022, 13, 819.	5.8	83
5	Assessing the economic potential of large-scale carbonate-formation-free CO ₂ electrolysis. Catalysis Science and Technology, 2022, 12, 2912-2919.	2.1	13
6	Tunable metallic-like transport in polypyrrole. Materials Futures, 2022, 1, 011001.	3.1	11
7	Reactor design for electrochemical CO2 conversion towardÂlarge-scale applications. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100419.	3.2	28
8	Electrochemical upgrade of CO2 from amine capture solution. Nature Energy, 2021, 6, 46-53.	19.8	129
9	Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule, 2021, 5, 706-719.	11.7	158
10	Towards Carbonâ∈Neutral Methanol Production from Carbon Dioxide Electroreduction. ChemNanoMat, 2021, 7, 728-736.	1.5	17
11	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications, 2021, 12, 2808.	5.8	91
12	Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Communications, 2021, 12, 2932.	5.8	97
13	CO ₂ electrolysis to multicarbon products in strong acid. Science, 2021, 372, 1074-1078.	6.0	541
14	CO ₂ Electroreduction to Formate at a Partial Current Density up to 590ÂmA mg ^{â^1} via Micrometerâ€scale Lateral Structuring of Bismuth Nanosheets. Small, 2021, 17, e2100602.	5.2	25
15	Bias-Adaptable CO ₂ -to-CO Conversion via Tuning the Binding of Competing Intermediates. Nano Letters, 2021, 21, 8924-8932.	4.5	13
16	Electrochemical CO ₂ reduction to ethanol: from mechanistic understanding to catalyst design. Journal of Materials Chemistry A, 2021, 9, 12474-12494.	5.2	36
17	Materials and system design for direct electrochemical CO ₂ conversion in capture media. Journal of Materials Chemistry A, 2021, 9, 18785-18792.	5.2	28
18	Twoâ€Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31

#	Article	IF	Citations
19	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	16.1	325
20	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nature Catalysis, 2020, 3, 14-22.	16.1	120
21	Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nature Communications, 2020, 11, 6190.	5. 8	93
22	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	5.8	72
23	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Letters, 2020, 5, 2811-2818.	8.8	106
24	CO ₂ Electroreduction to Methane at Production Rates Exceeding 100 mA/cm ² . ACS Sustainable Chemistry and Engineering, 2020, 8, 14668-14673.	3.2	41
25	Intermediate Binding Control Using Metal–Organic Frameworks Enhances Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 21513-21521.	6.6	133
26	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 2020, 5, 478-486.	19.8	363
27	Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science, 2020, 368, 1228-1233.	6.0	196
28	CO ₂ electrolysis to multicarbon products at activities greater than 1 A cm ^{â°'2} . Science, 2020, 367, 661-666.	6.0	860
29	Molecular enhancement of heterogeneous CO2 reduction. Nature Materials, 2020, 19, 266-276.	13.3	416
30	Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 2020, 142, 5702-5708.	6.6	638
31	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
32	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	6.6	154
33	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	16.1	390
34	Electrohydrogenation of Carbon Dioxide using a Ternary Pd/Cu ₂ O–Cu Catalyst. ChemSusChem, 2019, 12, 4471-4479.	3.6	15
35	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nature Communications, 2019, 10, 4807.	5.8	26
36	Binding Site Diversity Promotes CO ₂ Electroreduction to Ethanol. Journal of the American Chemical Society, 2019, 141, 8584-8591.	6.6	338

#	Article	lF	Citations
37	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258.	16.1	188
38	Oxomolybdate anchored on copper for electrocatalytic hydrogen production over the entire pH range. Applied Catalysis B: Environmental, 2019, 249, 227-234.	10.8	14
39	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Communications, 2019, 10, 5814.	5.8	201
40	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
41	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	16.1	214
42	Electrocatalytic Reduction of CO2 in Ionic Liquid-Based Electrolytes., 2019,, 1-15.		0
43	Recent advances in the nanoengineering of electrocatalysts for CO ₂ reduction. Nanoscale, 2018, 10, 6235-6260.	2.8	139
44	Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite. Electrochimica Acta, 2018, 269, 733-741.	2.6	56
45	Electrochemical reduction of CO ₂ on defect-rich Bi derived from Bi ₂ S ₃ with enhanced formate selectivity. Journal of Materials Chemistry A, 2018, 6, 4714-4720.	5.2	144
46	Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation. Advanced Energy Materials, 2018, 8, 1702794.	10.2	41
47	Stannate derived bimetallic nanoparticles for electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 7851-7858.	5.2	61
48	Polyoxometalate-Promoted Electrocatalytic CO ₂ Reduction at Nanostructured Silver in Dimethylformamide. ACS Applied Materials & Dimethylformamide. ACS Applied Materials & Dimethylformamide.	4.0	63
49	Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide. Nano Research, 2018, 11, 3678-3690.	5.8	17
50	Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018, 9, 4614.	5.8	153
51	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	16.1	354
52	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	5.8	279
53	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie - International Edition, 2018, 57, 13283-13287.	7.2	141
54	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie, 2018, 130, 13467-13471.	1.6	42

#	Article	IF	CITATIONS
55	Facile regrowth of Mg-Fe ₂ O ₃ /P-Fe ₂ O ₃ homojunction photoelectrode for efficient solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 13412-13418.	5.2	80
56	Electrochemical Reduction of CO ₂ with an Oxideâ€Derived Lead Nanoâ€Coralline Electrode in Dimcarb. ChemElectroChem, 2017, 4, 1402-1410.	1.7	22
57	Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography. Soft Matter, 2017, 13, 3685-3689.	1.2	12
58	Porous nitrogen–doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO. Electrochimica Acta, 2017, 245, 561-568.	2.6	76
59	Direct Detection of Electron Transfer Reactions Underpinning the Tin-Catalyzed Electrochemical Reduction of CO ₂ using Fourier-Transformed ac Voltammetry. ACS Catalysis, 2017, 7, 4846-4853.	5.5	60
60	Hierarchical Mesoporous SnO ₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO ₂ Reduction with High Efficiency and Selectivity. Angewandte Chemie, 2017, 129, 520-524.	1.6	136
61	Hierarchical Mesoporous SnO ₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO ₂ Reduction with High Efficiency and Selectivity. Angewandte Chemie - International Edition, 2017, 56, 505-509.	7.2	526
62	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie - International Edition, 2017, 56, 14718-14722.	7.2	164
63	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie, 2017, 129, 14910-14914.	1.6	58
64	Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS ₂): basal vs. edge plane activity. Chemical Science, 2017, 8, 6583-6593.	3.7	159
65	Electrochemical Reduction of Carbon Dioxide in a Monoethanolamine Capture Medium. ChemSusChem, 2017, 10, 4109-4118.	3.6	75
66	Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets. Nano Energy, 2017, 31, 270-277.	8.2	261
67	Electrochemical Reduction of CO ₂ at Metal Electrodes in a Distillable Ionic Liquid. ChemSusChem, 2016, 9, 1271-1278.	3.6	37
68	Highâ€Oriented Polypyrrole Nanotubes for Nextâ€Generation Gas Sensor. Advanced Materials, 2016, 28, 8265-8270.	11.1	128
69	Efficient Enzymatic Oxidation of Glucose Mediated by Ferrocene Covalently Attached to Polyethylenimine Stabilized Gold Nanoparticles. Electroanalysis, 2016, 28, 2728-2736.	1.5	10
70	Polyethylenimine promoted electrocatalytic reduction of CO ₂ to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy and Environmental Science, 2016, 9, 216-223.	15.6	156
71	Supercapacitors: Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes (Adv. Funct. Mater. 29/2015). Advanced Functional Materials, 2015, 25, 4562-4562.	7.8	3
72	Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes. Advanced Functional Materials, 2015, 25, 4601-4606.	7.8	79

#	Article	IF	CITATION
73	Gradual-order enhanced stability: a frozen section of electrospun nanofibers for energy storage. Nanoscale, 2015, 7, 8715-8719.	2.8	19
74	Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Physical Chemistry Chemical Physics, 2014, 16, 1883-1893.	1.3	188
75	Quenching of the Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium(II)/Tri- <i>n</i> -propylamine by Pristine Carbon Nanotube and Its Application to Quantitative Detection of DNA. Analytical Chemistry, 2013, 85, 1711-1718.	3.2	77
76	Facile fabrication of regular Au microband electrode arrays for voltammetric detection down to submicromolar level by hydrogel etching. Electrochemistry Communications, 2013, 30, 67-70.	2.3	7
77	Ultralow-limit gas detection in nano-dumbbell polymer sensor via electrospinning. Nanoscale, 2013, 5, 1803.	2.8	41
78	Fabrication of ultra-fine nanostructures using edge transfer printing. Nanoscale, 2012, 4, 1939.	2.8	21
79	Superconductivity above 30 K in alkali-metal-doped hydrocarbon. Scientific Reports, 2012, 2, 389.	1.6	155
80	Structureâ€Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns. Advanced Functional Materials, 2012, 22, 1284-1290.	7.8	241
81	Facile Patterning of Reduced Graphene Oxide Film into Microelectrode Array for Highly Sensitive Sensing. Analytical Chemistry, 2011, 83, 6426-6430.	3.2	63
82	Twoâ€Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications. , 0, , .		2