Stefan Janecek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7913917/publications.pdf Version: 2024-02-01

STEEAN LANECER

#	Article	IF	CITATIONS
1	How many α-amylase GH families are there in the CAZy database?. Amylase, 2022, 6, 1-10.	0.7	18
2	A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech, 2021, 11, 229.	1.1	7
3	In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites. Molecules, 2021, 26, 5704.	1.7	4
4	A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles, 2020, 24, 207-217.	0.9	17
5	A detailed in silico analysis of the amylolytic family CH126 and its possible relatedness to family CH76. Carbohydrate Research, 2020, 494, 108082.	1.1	7
6	Extension of the taxonomic coverage of the family GH126 outside Firmicutes and in silico characterization of its non-catalytic terminal domains. 3 Biotech, 2020, 10, 420.	1.1	5
7	New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-l±-glucanotransferases. Genetica, 2020, 148, 77-86.	O.5	5
8	Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Scientific Reports, 2020, 10, 1329.	1.6	9
9	Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships. International Journal of Biological Macromolecules, 2020, 159, 763-772.	3.6	13
10	Starch-binding domains as CBM families–history, occurrence, structure, function and evolution. Biotechnology Advances, 2019, 37, 107451.	6.0	83
11	Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity. Applied Microbiology and Biotechnology, 2019, 103, 6141-6151.	1.7	12
12	The unique evolution of the carbohydrateâ€binding module CBM 20 in laforin. FEBS Letters, 2018, 592, 586-598.	1.3	12
13	In silico analysis of the α-amylase family GH57: eventual subfamilies reflecting enzyme specificities. 3 Biotech, 2018, 8, 307.	1.1	21
14	The starchâ€binding domain family CBM41—An <i>in silico</i> analysis of evolutionary relationships. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1480-1492.	1.5	18
15	A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Scientific Reports, 2017, 7, 44230.	1.6	32
16	Fungal Hybrid B heme peroxidases – unique fusions of a heme peroxidase domain with a carbohydrate-binding domain. Scientific Reports, 2017, 7, 9393.	1.6	9
17	New insight in cereal starch degradation: identification and structural characterization of four α-amylases in bread wheat. Amylase, 2017, 1, .	0.7	29
18	α-Amylases from Archaea: Sequences, Structures and Evolution. Grand Challenges in Biology and Biotechnology, 2016, , 505-524.	2.4	4

STEFAN JANECEK

#	Article	IF	CITATIONS
19	Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cellular and Molecular Life Sciences, 2016, 73, 2707-2725.	2.4	81
20	Amylolytic glycoside hydrolases. Cellular and Molecular Life Sciences, 2016, 73, 2601-2602.	2.4	6
21	Domain evolution in enzymes of the neopullulanase subfamily. Microbiology (United Kingdom), 2016, 162, 2099-2115.	0.7	28
22	A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDIx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia (Poland), 2015, 70, 1284-1294.	0.8	27
23	In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1260-1268.	1.1	17
24	Novel family GH3 β-glucosidases or β-xylosidases of unknown function found in various animal groups, including birds and reptiles. Carbohydrate Research, 2015, 408, 44-50.	1.1	5
25	Two structurally related starch-binding domain families CBM25 and CBM26. Biologia (Poland), 2014, 69, 1087-1096.	0.8	17
26	α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cellular and Molecular Life Sciences, 2014, 71, 1149-1170.	2.4	272
27	Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Scientific Reports, 2014, 4, 5850.	1.6	33
28	Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evolutionary Biology, 2013, 13, 40.	3.2	49
29	Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydrate Research, 2013, 367, 48-57.	1.1	61
30	Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57. Microbiology (United Kingdom), 2013, 159, 2584-2593.	0.7	18
31	In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the αâ€amylase family GH57. FEBS Letters, 2012, 586, 3360-3366.	1.3	26
32	Association of Novel Domain in Active Site of Archaic Hyperthermophilic Maltogenic Amylase from Staphylothermus marinus. Journal of Biological Chemistry, 2012, 287, 7979-7989.	1.6	30
33	Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles, 2012, 16, 497-506.	0.9	54
34	Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme and Microbial Technology, 2011, 49, 429-440.	1.6	112
35	Sequence-Structural Features and Evolutionary Relationships of Family GH57 α-Amylases and Their Putative α-Amylase-Like Homologues. Protein Journal, 2011, 30, 429-435.	0.7	37
36	Characterization of Maltase Clusters in the Genus Drosophila. Journal of Molecular Evolution, 2011, 72, 104-118.	0.8	26

STEFAN JANECEK

#	Article	IF	CITATIONS
37	Morphological, physiological, molecular and phylogenetic characterization of new environmental isolates of Acanthamoeba spp. from the region of Bratislava, Slovakia. Biologia (Poland), 2010, 65, 81-91.	0.8	15
38	Tyrosine 39 of GH13 α-amylase from Thermococcus hydrothermalis contributes to its thermostability. Biologia (Poland), 2010, 65, 408-415.	0.8	9
39	Gene Sequence, Bioinformatics and Enzymatic Characterization of α-Amylase from Saccharomycopsis fibuligera KZ. Protein Journal, 2010, 29, 355-364.	0.7	33
40	New Insight into Structure/Function Relationships in Plant .ALPHAAmylase Family GH13 Members. Journal of Applied Glycoscience (1999), 2010, 57, 157-162.	0.3	4
41	The carbohydrateâ€binding module family 20 – diversity, structure, and function. FEBS Journal, 2009, 276, 5006-5029.	2.2	168
42	Looking for the ancestry of the heavyâ€chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 αâ€amylase family. FEBS Journal, 2009, 276, 7265-7278.	2.2	34
43	Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia (Poland), 2008, 63, 1057-1068.	0.8	50
44	The 3 rd Symposium on the Alpha-Amylase Family, Smolenice Castle, Slovakia, September 23–27, 2007. Biologia (Poland), 2008, 63, 963-966.	0.8	0
45	The unique glycoside hydrolase family 77 amylomaltase fromBorrelia burgdorferiwith only catalytic triad conserved. FEMS Microbiology Letters, 2008, 284, 84-91.	0.7	27
46	Sequence Fingerprints in the Evolution of the $\hat{I}\pm$ -Amylase Family. , 2008, , 45-63.		1
47	A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Letters, 2007, 581, 1261-1268.	1.3	39
48	The evolution of putative starch-binding domains. FEBS Letters, 2006, 580, 6349-6356.	1.3	62
49	α-Amylase from Thermococcus hydrothermalis: Re-cloning aimed at the improved expression and hydrolysis of corn starch. Enzyme and Microbial Technology, 2006, 39, 1300-1305.	1.6	14
50	A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS Journal, 2005, 272, 5497-5513.	2.2	62
51	Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcusâ€∫hydrothermalis. FEBS Journal, 2004, 271, 2863-2872.	0.2	80
52	Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. FEBS Journal, 2003, 270, 635-645.	0.2	102
53	A motif of a microbial starch-binding domain found in human genethonin. Bioinformatics, 2002, 18, 1534-1537.	1.8	40
54	Relationship of sequence and structure to specificity in the α-amylase family of enzymes. BBA - Proteins and Proteomics, 2001, 1546, 1-20.	2.1	554

Stefan Janecek

#	Article	IF	CITATIONS
55	Thermophilic archaeal amylolytic enzymes. Enzyme and Microbial Technology, 2000, 26, 3-14.	1.6	169
56	Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. FEMS Microbiology Letters, 2000, 192, 53-57.	0.7	45
57	New Horizons of Carbohydrate Bioengineering. Proteins without Enzymatic Function with Sequence Relatedness to the .ALPHAAmylase Family Trends in Glycoscience and Glycotechnology, 2000, 12, 363-371.	0.0	2
58	Close Evolutionary Relatedness of α-Amylases from Archaea and Plants. Journal of Molecular Evolution, 1999, 48, 421-426.	0.8	52
59	The evolution of starch-binding domain. FEBS Letters, 1999, 456, 119-125.	1.3	91
60	Domain Evolution in the α-Amylase Family. Journal of Molecular Evolution, 1997, 45, 322-331.	0.8	157
61	Close evolutionary relatedness among functionally distantly related members of the (α/β)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Letters, 1995, 377, 6-8.	1.3	39
62	Sequence Similarities and Evolutionary Relationships of Microbial, Plant and Animal alpha-amylases. FEBS Journal, 1994, 224, 519-524.	0.2	96
63	Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: Evolutionary distance is a reflection of unrelated sequences. FEBS Letters, 1994, 353, 119-123.	1.3	56
64	α-Amylases and approaches leading to their enhanced stability. FEBS Letters, 1992, 304, 1-3.	1.3	51