Eric Gawiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7913868/publications.pdf

Version: 2024-02-01

152 15,510 62 124
papers citations h-index g-index

156 156 156 6986 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. Astrophysical Journal, Supplement Series, 2022, 258, 1.	7.7	40
2	The Impact of Observing Strategy on Cosmological Constraints with LSST. Astrophysical Journal, Supplement Series, 2022, 259, 58.	7.7	13
3	Surface Brightness Profile of Lyman-α Halos out to 320 kpc in HETDEX. Astrophysical Journal, 2022, 929, 90.	4.5	15
4	Looking at the Distant Universe with the MeerKAT Array: Discovery of a Luminous OH Megamaser at z > 0.5. Astrophysical Journal Letters, 2022, 931, L7.	8.3	2
5	The LSST DESC DC2 Simulated Sky Survey. Astrophysical Journal, Supplement Series, 2021, 253, 31.	7.7	32
6	Star Formation Histories from Spectral Energy Distributions and Color–magnitude Diagrams Agree: Evidence for Synchronized Star Formation in Local Volume Dwarf Galaxies over the Past 3 Gyr. Astrophysical Journal, 2021, 913, 45.	4.5	9
7	The HETDEX Survey: The Lyl± Escape Fraction from 3D-HST Emission-Line Galaxies at z â^¼ 2. Astrophysical Journal, 2021, 912, 100.	4.5	11
8	HETDEX [O iii] Emitters. I. A Spectroscopically Selected Low-redshift Population of Low-mass, Low-metallicity Galaxies. Astrophysical Journal, 2021, 916, 11.	4.5	6
9	Correcting correlation functions for redshift-dependent interloper contamination. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3187-3206.	4.4	15
10	The LSST-DESC 3x2pt Tomography Optimization Challenge. The Open Journal of Astrophysics, 2021, 4, .	2.8	7
11	Detection of Lyman Continuum from 3.0 < z < 3.5 Galaxies in the HETDEX Survey. Astrophysical Journal, 2021, 920, 122.	4.5	11
12	Simultaneous Estimation of Large-scale Structure and Milky Way Dust Extinction from Galaxy Surveys. Astrophysical Journal, 2021, 921, 108.	4.5	1
13	First HETDEX Spectroscopic Determinations of Lyα and UV Luminosity Functions at z = 2–3: Bridging a Gap between Faint AGNs and Bright Galaxies. Astrophysical Journal, 2021, 922, 167.	4.5	19
14	Using a Neural Network Classifier to Select Galaxies with the Most Accurate Photometric Redshifts. Astrophysical Journal, 2021, 922, 153.	4.5	2
15	The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections*. Astrophysical Journal, 2021, 923, 217.	4.5	55
16	The diversity and variability of star formation histories in models of galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 498, 430-463.	4.4	62
17	Optimizing LSST observing strategy for weak lensing systematics. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1140-1153.	4.4	4
18	Tomographic galaxy clustering with the Subaru Hyper Suprime-Cam first year public data release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 044-044.	5.4	41

#	Article	IF	CITATIONS
19	Angular Correlation Function Estimators Accounting for Contamination from Probabilistic Distance Measurements. Astrophysical Journal, 2020, 890, 78.	4.5	4
20	Cosmological 3D H i Gas Map with HETDEX Lyα Emitters and eBOSS QSOs at zÂ=Â2: IGMâ^'Galaxy/QSO Connection and aÂâ^1⁄440 Mpc Scale Giant H ii Bubble Candidate. Astrophysical Journal, 2020, 903, 24.	4.5	9
21	The CANDELS/SHARDS Multiwavelength Catalog in GOODS-N: Photometry, Photometric Redshifts, Stellar Masses, Emission-line Fluxes, and Star Formation Rates. Astrophysical Journal, Supplement Series, 2019, 243, 22.	7.7	111
22	Learning the relationship between galaxies spectra and their star formation histories using convolutional neural networks and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5503-5520.	4.4	28
23	Star Formation Stochasticity Measured from the Distribution of Burst Indicators. Astrophysical Journal, 2019, 873, 74.	4.5	31
24	The Spitzer-HETDEX Exploratory Large Area Survey. II. The Dark Energy Camera and Spitzer/IRAC Multiwavelength Catalog. Astrophysical Journal, Supplement Series, 2019, 240, 5.	7.7	23
25	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	5.4	741
26	LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophysical Journal, 2019, 873, 111.	4.5	1,744
27	Going beyond galaxy ages with dense basis star formation history reconstruction. Proceedings of the International Astronomical Union, 2019, 15, 134-137.	0.0	0
28	Nonparametric Star Formation History Reconstruction with Gaussian Processes. I. Counting Major Episodes of Star Formation. Astrophysical Journal, 2019, 879, 116.	4.5	81
29	CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST. Astrophysical Journal, Supplement Series, 2019, 245, 26.	7.7	67
30	The SFR–M _* Correlation Extends to Low Mass at High Redshift. Astrophysical Journal, 2018, 866, 120.	4.5	29
31	Demographics of Star-forming Galaxies since zÂâ^¼Â2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100.	4.5	79
32	LADUMA: Looking at the Distant Universe with the MeerKAT Array. , 2018, , .		5
33	Physical Properties of Sub-galactic Clumps at 0.5 ≠Z ≠1.5 in the UVUDF. Astrophysical Journal, 2017, 837, 6.	4.5	37
34	An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts. Astrophysical Journal, 2017, 840, 78.	4.5	95
35	Reconstruction of Galaxy Star Formation Histories through SED Fitting: The Dense Basis Approach. Astrophysical Journal, 2017, 838, 127.	4.5	70
36	CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip. Astrophysical Journal, Supplement Series, 2017, 229, 32.	7.7	127

3

#	Article	IF	CITATIONS
37	Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths. Astrophysical Journal, 2017, 843, 130.	4.5	26
38	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 79.	4.5	99
39	HST EMISSION LINE GALAXIES AT z $\hat{a}^{1}/4$ 2: COMPARING PHYSICAL PROPERTIES OF LYMAN ALPHA AND OPTICAL EMISSION LINE SELECTED GALAXIES. Astrophysical Journal, 2016, 817, 79.	4.5	50
40	SPATIALLY RESOLVED SPECTROSCOPY OF SUBMILLIMETER GALAXIES AT z \hat{A} 3%. Astrophysical Journal, 2016, 827, 57.	4.5	13
41	TESTING LSST DITHER STRATEGIES FOR SURVEY UNIFORMITY AND LARGE-SCALE STRUCTURE SYSTEMATICS. Astrophysical Journal, 2016, 829, 50.	4.5	23
42	THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM H^2 AND FUV. Astrophysical Journal, 2016, 833, 37.	4.5	69
43	THE SPITZER-HETDEX EXPLORATORY LARGE-AREA SURVEY. Astrophysical Journal, Supplement Series, 2016, 224, 28.	7.7	65
44	EVOLUTION OF INTRINSIC SCATTER IN THE SFR–STELLAR MASS CORRELATION AT 0.5 < z < 3. Astrophysical Journal Letters, 2016, 820, L1.	8.3	65
45	Properties of damped LyÂα absorption systems and star-forming galaxies in semi-analytic models at <i>z</i> Â=Â2. Monthly Notices of the Royal Astronomical Society, 2016, 458, 531-557.	4.4	10
46	THE DUST ATTENUATION CURVE VERSUS STELLAR MASS FOR EMISSION LINE GALAXIES AT < i> z < /i> $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2015, 814, 162.	4.5	31
47	Properties of submillimetre galaxies in a semi-analytic model using the †Count Matching†approach: application to the ECDF-S. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2291-2311.	4.4	34
48	ZFOURGE/CANDELS: ON THE EVOLUTION OF (i) M (i) * GALAXY PROGENITORS FROM (i) z (i) = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	4.5	104
49	SIMULTANEOUS ESTIMATION OF PHOTOMETRIC REDSHIFTS AND SED PARAMETERS: IMPROVED TECHNIQUES AND A REALISTIC ERROR BUDGET. Astrophysical Journal, 2015, 804, 8.	4.5	20
50	A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS. Astrophysical Journal, 2015, 808, 101.	4.5	106
51	UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD. Astronomical Journal, 2015, 150, 31.	4.7	139
52	Spectroscopic needs for imaging dark energy experiments. Astroparticle Physics, 2015, 63, 81-100.	4.3	66
53	Damped LyÎ \pm absorption systems in semi-analytic models with multiphase gas. Monthly Notices of the Royal Astronomical Society, 2014, 441, 939-963.	4.4	24
54	THE REST-FRAME ULTRAVIOLET STRUCTURE OF 0.5 < <i>z</i> < 1.5 GALAXIES. Astrophysical Journal, 2014, 791, 18.	4.5	8

#	Article	IF	CITATIONS
55	<i>HUBBLE SPACE TELESCOPE</i> EMISSION LINE GALAXIES AT <i>z</i> ⹼ 2: THE Lyα ESCAPE FRACTION. Astrophysical Journal, 2014, 796, 64.	4.5	29
56	THE HETDEX PILOT SURVEY. V. THE PHYSICAL ORIGIN OF LyÎ \pm EMITTERS PROBED BY NEAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2014, 791, 3.	4.5	82
57	SPECTRAL ENERGY DISTRIBUTION FITTING OF HETDEX PILOT SURVEY Lyα EMITTERS IN COSMOS AND GOODS-N. Astrophysical Journal, 2014, 786, 59.	4.5	45
58	THE UV CONTINUUM OF $\langle i\rangle z\langle i\rangle$ > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD. Astrophysical Journal Letters, 2014, 793, L5.	8.3	19
59	TO STACK OR NOT TO STACK: SPECTRAL ENERGY DISTRIBUTION PROPERTIES OF Lyα-EMITTING GALAXIES AT <i>z</i> = 2.1. Astrophysical Journal, 2014, 783, 26.	4.5	31
60	Improving the LSST dithering pattern and cadence for dark energy studies. Proceedings of SPIE, 2014, , .	0.8	6
61	Low/High Redshift Classification of Emission Line Galaxies in the HETDEX survey. Proceedings of the International Astronomical Union, 2014, 10, 365-368.	0.0	1
62	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD. Astrophysical Journal, Supplement Series, 2013, 207, 24.	7.7	400
63	A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION. Astrophysical Journal, 2013, 775, 93.	4.5	290
64	UVUDF: ULTRAVIOLET IMAGING OF THE HUBBLE ULTRA DEEP FIELD WITH WIDE-FIELD CAMERA 3. Astronomical Journal, 2013, 146, 159.	4.7	65
65	SEARCHING FOR NEUTRAL HYDROGEN HALOS AROUND <i>>z</i> i>â^1/4 2.1 AND <i>z</i> i>â^1/4 3.1 Lyî± EMITTING GAL/Astrophysical Journal, 2013, 776, 75.	AXIES.	46
66	PANCHROMATIC ESTIMATION OF STAR FORMATION RATES IN <i>BzK</i> GALAXIES AT 1 < <i>z</i> < 3. Astrophysical Journal, 2012, 750, 117.	4.5	11
67	THE EVOLUTION OF Lyî±-EMITTING GALAXIES BETWEEN <i>>z</i> = 2.1 AND <i>z</i> = 3.1. Astrophysical Journal, 2012, 744, 110.	4.5	99
68	X-RAY CONSTRAINTS ON THE Lyα ESCAPE FRACTION. Astrophysical Journal, 2012, 746, 28.	4.5	15
69	Merger rates for early-type galaxies: combining clustering and luminosity function measurements. Proceedings of the International Astronomical Union, 2012, 8, 184-184.	0.0	0
70	EVOLUTION IN THE CONTINUUM MORPHOLOGICAL PROPERTIES OF Lyα-EMITTING GALAXIES FROM (i>z < /i> = 3.1 TO (i>z < /i> = 2.1. Astrophysical Journal, 2012, 753, 95.	4.5	30
71	THE CURIOUS CASE OF Lyα EMITTERS: GROWING YOUNGER FROM <i>z</i> â^¼ 3 to <i>z</i> â^¼ 2?. Astrophys Journal Letters, 2012, 751, L26.	ical 8.3	20
72	PRESENT-DAY DESCENDANTS OF <i>z < /i> = 3 Lyî±-EMITTING GALAXIES IN THE MILLENNIUM-II HALO MERGER TREES. Astrophysical Journal, 2012, 752, 160.</i>	4.5	2

#	Article	IF	CITATIONS
73	SURVEY DESIGN FOR SPECTRAL ENERGY DISTRIBUTION FITTING: A FISHER MATRIX APPROACH. Astrophysical Journal, 2012, 749, 72.	4.5	4
74	STACKED REST-FRAME ULTRAVIOLET SPECTRA OF Lyı̂ \pm -EMITTING AND CONTINUUM-SELECTED GALAXIES AT 2 < <i>z</i> < <i>z</i>	4.5	36
75	DIFFERENTIAL MORPHOLOGY BETWEEN REST-FRAME OPTICAL AND ULTRAVIOLET EMISSION FROM 1.5 < <i>>z</i> < <a>2011,729,48.	4.5	16
76	SED fitting with MCMC: methodology and application to large galaxy surveys. Proceedings of the International Astronomical Union, 2011, 7, 42-45.	0.0	5
77	THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES. Astrophysical Journal, 2011, 729, 140.	4.5	103
78	THE HETDEX PILOT SURVEY. II. THE EVOLUTION OF THE LyÎ \pm ESCAPE FRACTION FROM THE ULTRAVIOLET SLOPE AND LUMINOSITY FUNCTION OF 1.9 < <i>z</i> < 3.8 LAEs. Astrophysical Journal, 2011, 736, 31.	4.5	152
79	Lyα-EMITTING GALAXIES AT <i>z</i> = 2.1: STELLAR MASSES, DUST, AND STAR FORMATION HISTORIES FROM SPECTRAL ENERGY DISTRIBUTION FITTING. Astrophysical Journal, 2011, 733, 114.	4.5	84
80	THE REST-FRAME ULTRAVIOLET LIGHT PROFILE SHAPES OF Lyα-EMITTING GALAXIES AT $\langle i \rangle$ z $\langle i \rangle$ = 3.1. Astrophysical Journal, 2011, 743, 9.	4.5	23
81	SPECTRAL ENERGY DISTRIBUTION FITTING WITH MARKOV CHAIN MONTE CARLO: METHODOLOGY AND APPLICATION TO $\langle i \rangle_z \langle j \rangle_z = 3.1 \text{ Lyl}^\pm$ -EMITTING GALAXIES. Astrophysical Journal, 2011, 737, 47.	4.5	80
82	The LABOCA survey of the Extended Chandra Deep Field-South: a photometric redshift survey of submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1479-1508.	4.4	184
83	THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES. Astrophysical Journal, Supplement Series, 2011, 192, 5.	7.7	134
84	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEYâ€"THE ⟨i⟩HUBBLE SPACE TELESCOPE⟨/i⟩ OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	7.7	1,549
85	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	7.7	1,590
86	Black hole growth in the early Universe is self-regulated and largely hidden from view. Nature, 2011, 474, 356-358.	27.8	65
87	THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS?. Astrophysical Journal, 2010, 712, 1287-1301.	4.5	143
88	DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT <i>>z</i> > â^1/4 1. Astrophysical Journal Letters, 2010, 721, L38-L42.	8.3	78
89	EVIDENCE FOR SPATIALLY COMPACT LyÎ \pm EMISSION IN $\langle i \rangle z \langle j \rangle = 3.1$ LyÎ \pm -EMITTING GALAXIES. Astrophysical Journal Letters, 2010, 716, L200-L204.	8.3	38
90	LyÎ \pm -EMITTING GALAXIES AT $<$ i $>$ z $<$ /i $>$ = 2.1 IN ECDF-S: BUILDING BLOCKS OF TYPICAL PRESENT-DAY GALAXIES?. Astrophysical Journal, 2010, 714, 255-269.	4.5	157

#	Article	IF	Citations
91	MIPS 24 $\hat{1}$ /4m OBSERVATIONS OF THE HUBBLE DEEP FIELD SOUTH: PROBING THE IR-RADIO CORRELATION OF GALAXIES AT <i>z</i> kgt;1. Astrophysical Journal, 2010, 723, 1110-1118.	4.5	12
92	THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S. Astrophysical Journal, Supplement Series, 2010, 189, 270-285.	7.7	225
93	A SIMULTANEOUS STACKING AND DEBLENDING ALGORITHM FOR ASTRONOMICAL IMAGES. Astronomical Journal, 2010, 139, 1592-1599.	4.7	35
94	The Space Density of Compton-thick AGN. , 2010, , .		0
95	How to falsify theGR+Î،CDMmodel with galaxy redshift surveys. Physical Review D, 2010, 82, .	4.7	27
96	OPTICAL SPECTROSCOPY OF X-RAY SOURCES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH. Astrophysical Journal, 2009, 693, 1713-1727.	4.5	91
97	THE RISE OF MASSIVE RED GALAXIES: THE COLOR-MAGNITUDE AND COLOR-STELLAR MASS DIAGRAMS FOR (i) < sub>phot < sub>â % 2 2 FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE. Astrophysical Journal, 2009, 694, 1171-1199.	4.5	67
98	SIZES OF LYα-EMITTING GALAXIES AND THEIR REST-FRAME ULTRAVIOLET COMPONENTS AT $\langle i \rangle z \langle i \rangle = 3.1$. Astrophysical Journal, 2009, 705, 639-649.	4.5	49
99	HEAVILY OBSCURED AGN IN STAR-FORMING GALAXIES AT <i>z</i> f 2. Astrophysical Journal, 2009, 706, 535-552.	4.5	70
100	Introducing the photometric maximum likelihood method: galaxy luminosity functions atz < 1.2in MUSYC-ECDFS. Monthly Notices of the Royal Astronomical Society, 2009, 400, 429-450.	4.4	12
101	Spectral Energy Distribution fitting: Application to Lyl±-emitting galaxies. New Astronomy Reviews, 2009, 53, 50-53.	12.8	8
102	A PUBLIC, <i>K</i> -SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC). Astrophysical Journal, Supplement Series, 2009, 183, 295-319.	7.7	125
103	What drives the star formation in early-type galaxies at late epochs? - the case for minor mergers. Proceedings of the International Astronomical Union, 2009, 5, 168-171.	0.0	1
104	The Clustering Properties of Intermediate X-ray Luminosity AGN at $z\sim3$. Proceedings of the International Astronomical Union, 2009, 5, 261-261.	0.0	0
105	THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH. Astrophysical Journal, 2009, 707, 1201-1216.	4.5	304
106	<i>Spitzer</i> Constraints on the Stellar Populations of Lyαâ€Emitting Galaxies at <i>z</i> at <i>z<</i>	4.5	87
107	Midâ€Infrared Properties and Color Selection for Xâ€Rayâ€Detected Active Galactic Nuclei in the MUSYC Extended Chandra Deep Field–South. Astrophysical Journal, 2008, 680, 130-142.	4.5	72
108	A Nearâ€Infrared Spectroscopic Survey of <i>K</i> àâ€Selected Galaxies at <i>z</i> àâ¹¼ 2.3: Redshifts and Implications for Broadband Photometric Studies. Astrophysical Journal, 2008, 677, 219-237.	4.5	114

#	Article	IF	CITATIONS
109	Clustering of Intermediate-Luminosity X-Ray-Selected Active Galactic Nuclei at $\langle i \rangle z \langle i \rangle \sim 3$. Astrophysical Journal, 2008, 673, L13-L16.	4.5	23
110	The Multiwavelength Survey by Yale hile (MUSYC): Wide <i>K</i> â€Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at <i>z</i> Ââ^¼Â2. Astrophysical Journal, 2008, 681, 1099-1115.	4.5	63
111	The UCSD/Keck Damped Lyl± Abundance Database: A Decade of Highâ€Resolution Spectroscopy. Astrophysical Journal, Supplement Series, 2007, 171, 29-60.	7.7	99
112	The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies. Astronomical Journal, 2007, 134, 1103-1117.	4.7	88
113	Systematic Uncertainties in Stellar Mass Estimation for Distinct Galaxy Populations. Astrophysical Journal, 2007, 657, L5-L8.	4.5	84
114	Lyαâ€Emitting Galaxies at <i>>z</i> = 3.1: <i>L</i> * Progenitors Experiencing Rapid Star Formation. Astrophysical Journal, 2007, 671, 278-284.	4.5	265
115	Clustering ofKâ€selected Galaxies at 2 <z< 138-152.<="" 2007,="" 3.5:="" 654,="" a="" astrophysical="" colorâ€density="" evidence="" for="" journal,="" relation.="" td=""><td>4.5</td><td>86</td></z<>	4.5	86
116	Lyα Emissionâ€Line Galaxies at <i>>z</i> = 3.1 in the Extended Chandra Deep Field–South. Astrophysical Journal, 2007, 667, 79-91.	4.5	293
117	<i>Spitzer</i> Mid―to Far―nfrared Flux Densities of Distant Galaxies. Astrophysical Journal, 2007, 668, 45-61.	4.5	148
118	The Origin of Line Emission in Massive <i>z</i> a^1/4 2.3 Galaxies: Evidence for Cosmic Downsizing of AGN Host Galaxies. Astrophysical Journal, 2007, 669, 776-790.	4.5	73
119	The Extended Chandra Deep Field-South Survey: X-Ray Point-Source Catalog. Astronomical Journal, 2006, 131, 2373-2382.	4.7	53
120	CXOCY J220132.8â~'320144: An Edgeâ€on Spiral Gravitational Lens. Astrophysical Journal, 2006, 652, 955-962.	4.5	10
121	Star Formation in Distant Red Galaxies: Spitzer Observations in the Hubble Deep Field-South. Astrophysical Journal, 2006, 636, L17-L20.	4.5	38
122	Spectroscopic Identification of Massive Galaxies at $z\sim2.3$ with Strongly Suppressed Star Formation. Astrophysical Journal, 2006, 649, L71-L74.	4.5	190
123	Measurement of the Spatial Cross-Correlation Function of Damped Lyl± Systems and Lyman Break Galaxies. Astrophysical Journal, 2006, 636, L9-L12.	4.5	33
124	The Physical Nature of Lyα-emitting Galaxies at z  = 3.1. Astrophysical Journal, 2006, 642, L13-L16.	4.5	181
125	The UCSD Radioâ€selected Quasar Survey for Damped Lyα Systems. Astrophysical Journal, 2006, 646, 730-741.	4.5	68
126	The cross-correlation of damped Lyman-α systems and Lyman break galaxies. New Astronomy Reviews, 2006, 50, 35-39.	12.8	0

#	Article	IF	CITATIONS
127	The Multiwavelength Survey by Yale hile (MUSYC): Survey Design and Deep Public UBVRI z ′ Images and Catalogs of the Extended Hubble Deep Field–South. Astrophysical Journal, Supplement Series, 2006, 162, 1-19.	7.7	228
128	Direct Measurements of the Stellar Continua and Balmer/4000 A Breaks of Redz > 2 Galaxies: Redshifts and Improved Constraints on Stellar Populations. Astrophysical Journal, 2006, 645, 44-54.	4.5	72
129	Survey for Galaxies Associated withzâ ¹ / ₄ 3 Damped Lyα Systems. II. Galaxyâ€Absorber Correlation Functions. Astrophysical Journal, 2006, 652, 994-1010.	4.5	61
130	The Calan‥ale Deep Extragalactic Research (CYDER) Survey: Optical Properties and Deep Spectroscopy of Serendipitous Xâ€Ray Sources. Astrophysical Journal, 2005, 621, 104-122.	4.5	27
131	Survey for Galaxies Associated withzâ ¹ /₄ 3 Damped Lyα Systems. I. Spectroscopic Calibration ofu′BVRIPhotometric Selection. Astrophysical Journal, 2005, 621, 596-614.	4.5	23
132	DAMPED LYα SYSTEMS. Annual Review of Astronomy and Astrophysics, 2005, 43, 861-918.	24.3	615
133	On the Nature of the Heat Source for Damped Lyl± Systems. Astrophysical Journal, 2004, 615, 625-644.	4.5	38
134	An Xâ€Ray–selected Active Galactic Nucleus atz = 4.6 Discovered by the CYDER Survey. Astrophysical Journal, 2004, 603, 36-41.	4.5	4
135	The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Ly Systems. Astrophysical Journal, 2003, 595, L9-L12.	4.5	268
136	Cii* Absorption in Damped Lyl̂ \pm Systems. II. A New Window on the Star Formation History of the Universe. Astrophysical Journal, 2003, 593, 235-257.	4.5	104
137	Cii* Absorption in Damped Lyα Systems. I. Star Formation Rates in a Twoâ€Phase Medium. Astrophysical Journal, 2003, 593, 215-234.	4.5	138
138	The ESI/Keck II Damped Lyl± Abundance Database. Astrophysical Journal, Supplement Series, 2003, 147, 227-264.	7.7	125
139	Galaxies Associated with [CLC][ITAL]z[/ITAL][/CLC] â^¼â€‰4 Damped L[CLC]y[/CLC]α Systems. I. Imaging Photometric Selection. Astronomical Journal, 2002, 123, 2206-2222.	and 4.7	14
140	Galactic Chemical Abundances atz > 3. I. First Results from the Echellette Spectrograph and Imager. Astrophysical Journal, 2001, 552, 99-105.	4.5	51
141	Interpreting CMB anisotropy observations: Trying to tell the truth with statistics. AIP Conference Proceedings, 2001, , .	0.4	О
142	Contribution of Bright Extragalactic Radio Sources to Microwave Anisotropy. Astrophysical Journal, 2001, 562, 88-94.	4.5	21
143	The UCSD HIRES/Keck I Damped Lyl± Abundance Database. I. The Data. Astrophysical Journal, Supplement Series, 2001, 137, 21-73.	7.7	122
144	First Investigation of the Clustering Environment of Damped Lyl̂± Absorbers atz â‰f 4. Astrophysical Jou 2001, 562, 628-634.	ırnal,	25

#	Article	IF	CITATIONS
145	Is the Î>CDM Model Consistent with Observations of Large-Scale Structure?., 2001,, 92-97.		O
146	From the Cosmological Microwave Background to Large-Scale Structure. , 2001, , .		0
147	From the Cosmological Microwave Background to Large-Scale Structure. Physica Scripta, 2000, T85, 132.	2.5	3
148	The cosmic microwave background radiation. Physics Reports, 2000, 333-334, 245-267.	25.6	56
149	Constraining Primordial Nonâ€Gaussianity with the Abundance of Highâ€Redshift Clusters. Astrophysical Journal, 2000, 532, 1-16.	4.5	60
150	From the cosmological microwave background to large-scale structure. , 1999, , .		0
151	Extracting Primordial Density Fluctuations. Science, 1998, 280, 1405-1411.	12.6	135
152	Contribution of Extragalactic Infrared Sources to Cosmic Microwave Background Foreground Anisotropy. Astrophysical Journal, 1997, 480, L1-L4.	4.5	16