Ruitao Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/791341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulosic substrate materials with multi-scale building blocks: fabrications, properties and applications in bioelectronic devices. Chemical Engineering Journal, 2022, 430, 132562.	12.7	17
2	Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydrate Polymers, 2022, 278, 118922.	10.2	26
3	Adsorptivity of cationic cellulose nanocrystals for phosphate and its application in hyperphosphatemia therapy. Carbohydrate Polymers, 2021, 255, 117335.	10.2	7
4	Advances in polysaccharide nanocrystals as pharmaceutical excipients. Carbohydrate Polymers, 2021, 262, 117922.	10.2	21
5	Anticoagulant Hydrogel Tubes with Poly(ɛ aprolactone) Sheaths for Smallâ€Diameter Vascular Grafts. Advanced Healthcare Materials, 2021, 10, e2100839.	7.6	13
6	Dialdehyde Nanocrystalline Cellulose as Antibiotic Substitutes against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2021, 13, 33802-33811.	8.0	24
7	The Effect of Different Additives on the Hydration and Gelation Properties of Composite Dental Gypsum. Gels, 2021, 7, 117.	4.5	5
8	Impact of nanomaterials on the intestinal mucosal barrier and its application in treating intestinal diseases. Nanoscale Horizons, 2021, 7, 6-30.	8.0	13
9	Cellophane or Nanopaper: Which Is Better for the Substrates of Flexible Electronic Devices?. ACS Sustainable Chemistry and Engineering, 2020, 8, 7774-7784.	6.7	23
10	Hydroxypropyl Guar/Cellulose Nanocrystal Film with Ionic Liquid and Anthocyanin for Real-Time and Visual Detection of NH ₃ . ACS Sustainable Chemistry and Engineering, 2020, 8, 9731-9741.	6.7	47
11	A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydrate Polymers, 2020, 243, 116466.	10.2	54
12	Manufacture of Hydrophobic Nanocomposite Films with High Printability. ACS Sustainable Chemistry and Engineering, 2019, 7, 15404-15412.	6.7	16
13	Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydrate Polymers, 2019, 224, 115144.	10.2	157
14	Nanomaterials for the theranostics of obesity. Biomaterials, 2019, 223, 119474.	11.4	27
15	High-efficiency transfer of fingerprints from various surfaces using nanofibrillated cellulose. Nanoscale Horizons, 2019, 4, 953-959.	8.0	18
16	Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS Nano, 2019, 13, 5002-5014.	14.6	73
17	Modified Fenton Oxidation of Cellulose Fibers for Cellulose Nanofibrils Preparation. ACS Sustainable Chemistry and Engineering, 2019, 7, 1129-1136.	6.7	50
18	Fabrication of cellulose/graphene paper as a stable-cycling anode materials without collector. Carbohydrate Polymers, 2018, 184, 30-36.	10.2	23

RUITAO CHA

#	Article	IF	CITATIONS
19	Cellulose nanocrystals as reinforcements for collagen-based casings with low gas transmission. Cellulose, 2018, 25, 463-471.	4.9	31
20	Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. Journal of Materials Chemistry B, 2018, 6, 6413-6423.	5.8	20
21	Nanocelluloseâ€Based Antibacterial Materials. Advanced Healthcare Materials, 2018, 7, e1800334.	7.6	149
22	Preparation of green and gelatin-free nanocrystalline cellulose capsules. Carbohydrate Polymers, 2017, 164, 358-363.	10.2	34
23	An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab on A Chip, 2017, 17, 2225-2234.	6.0	93
24	2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. Journal of Materials Chemistry B, 2017, 5, 7876-7884.	5.8	79
25	Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 158, 213-221.	5.0	32
26	Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent. Biomacromolecules, 2016, 17, 2472-2478.	5.4	83
27	A microfluidic indirect competitive immunoassay for multiple and sensitive detection of testosterone in serum and urine. Analyst, The, 2016, 141, 815-819.	3.5	22
28	The biocompatibility evaluation of iron oxide nanoparticles synthesized by a one pot process for intravenous iron supply. RSC Advances, 2016, 6, 14329-14334.	3.6	14
29	Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale, 2016, 8, 973-978.	5.6	81
30	Nanocrystalline cellulose-dispersed AKD emulsion for enhancing the mechanical and multiple barrier properties of surface-sized paper. Carbohydrate Polymers, 2016, 136, 1035-1040.	10.2	42
31	Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydrate Polymers, 2015, 130, 275-279.	10.2	47
32	One-Step Detection of Pathogens and Viruses: Combining Magnetic Relaxation Switching and Magnetic Separation. ACS Nano, 2015, 9, 3184-3191.	14.6	182
33	Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl) Tj ETQq1 1 0.7843	l4.rgBT /C 10.2	veglock 10
34	Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydrate Polymers, 2012, 88, 713-718.	10.2	142
35	Development of cellulose paper testing strips for quick measurement of glucose using chromogen agent. Carbohydrate Polymers, 2012, 88, 1414-1419.	10.2	43