
Alexander V Levanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7913317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solubility product and thermodynamic functions of copper (II) oxalate. Chemical Engineering Communications, 2021, 208, 1385-1394.	2.6	2
2	Determination of a Kinetic Law of Phosphorescence Decay Using a Conventional Photo Camera and Free Image Processing Software. Journal of Chemical Education, 2020, 97, 2685-2690.	2.3	8
3	Mechanism and Kinetic Model of Chlorate and Perchlorate Formation during Ozonation of Aqueous Chloride Solutions. Industrial & amp; Engineering Chemistry Research, 2020, 59, 14278-14287.	3.7	12
4	Kinetics of Carbon Dioxide Release During the Ozonation of Aqueous Solutions of Formic Acid. Russian Journal of Physical Chemistry A, 2020, 94, 2219-2225.	0.6	1
5	Mathematical Modeling of the Kinetics of Molecular Chlorine Release during the Ozonation of Chlorides in a Bubble Column Reactor. Russian Journal of Physical Chemistry A, 2020, 94, 81-87.	0.6	4
6	Oxidation of Oxalic Acid in the Ozone–Chloride–Ion Reaction System in an Aqueous Solution. Russian Journal of Physical Chemistry A, 2020, 94, 71-76.	0.6	1
7	Determining the Potential of a Silver/Silver Chloride Electrode at Different Temperatures. Russian Journal of Physical Chemistry A, 2019, 93, 770-773.	0.6	2
8	Thermodynamic and Kinetic Parameters of the Solubility of Ozone in Water. Russian Journal of Physical Chemistry A, 2019, 93, 1230-1234.	0.6	3
9	Kinetics and Mechanism of Ozone Interaction with Chloride Ions. Russian Journal of Physical Chemistry A, 2019, 93, 1677-1685.	0.6	8
10	Rate Constant of the Reaction between Ozone and Chloride Ion in an Aqueous Solution According to a Mechanism of Oxygen Atom Transfer. Russian Journal of Physical Chemistry A, 2019, 93, 1045-1048.	0.6	5
11	Kinetics of chlorate formation during ozonation of aqueous chloride solutions. Chemosphere, 2019, 229, 68-76.	8.2	25
12	Dissociation Constants of Hydrohalic Acids HCl, HBr, and HI in Aqueous Solutions. Russian Journal of Physical Chemistry A, 2019, 93, 93-101.	0.6	7
13	Solubility of Ozone and Kinetics of Its Decomposition in Aqueous Chloride Solutions. Industrial & Engineering Chemistry Research, 2018, 57, 14355-14364.	3.7	25
14	Dissociation Constants of Perchloric and Sulfuric Acids in Aqueous Solution. Journal of Physical Chemistry B, 2018, 122, 6277-6286.	2.6	12
15	Dissociation constant of nitric acid. Russian Journal of Physical Chemistry A, 2017, 91, 1221-1228.	0.6	17
16	Interaction of ozone and carbon dioxide with polycrystalline potassium bromide and its atmospheric implication. Atmospheric Environment, 2017, 152, 290-297.	4.1	0
17	Coefficient of ozone mass transfer during its interaction with an aqueous solution of formic acid in a bubble column reactor. Russian Journal of Physical Chemistry A, 2017, 91, 1427-1431.	0.6	5
18	Kinetic characteristics of gas–liquid ozone reactions. Russian Journal of Physical Chemistry A, 2017, 91, 1845-1850.	0.6	1

Alexander V Levanov

#	Article	IF	CITATIONS
19	Interaction between gaseous ozone and crystalline potassium bromide. Russian Journal of Physical Chemistry A, 2016, 90, 1312-1318.	0.6	2
20	Oxidation of Co(II) by ozone and reactions of Co(III) in solutions of sulfuric acid. Russian Journal of Physical Chemistry A, 2016, 90, 2358-2363.	0.6	4
21	Molar absorption coefficient of ozone in aqueous solutions. Journal of Analytical Chemistry, 2016, 71, 549-553.	0.9	17
22	Enthalpies of the formation and decomposition of hydrogen trioxide HOOOH in an aqueous solution. Russian Journal of Physical Chemistry A, 2016, 90, 2136-2141.	0.6	4
23	Photochemical oxidation of chloride ion by ozone in acid aqueous solution. Environmental Science and Pollution Research, 2015, 22, 16554-16569.	5.3	25
24	Hydrogen polyoxides H2O3 and H2O4 as components of peroxy radical condensate obtained from electro-dissociated water vapor. Chemical Physics, 2015, 447, 10-14.	1.9	7
25	Formation of Hydrogen Polyoxides As Constituents of Peroxy Radical Condensate upon Low-Temperature Interaction of Hydrogen Atoms with Liquid Ozone. Journal of Physical Chemistry A, 2014, 118, 62-69.	2.5	11
26	Mechanism of the formation of hydrogen tetroxide and peroxide via low-temperature interaction between hydrogen atoms and molecular oxygen. Russian Journal of Physical Chemistry A, 2014, 88, 1488-1492.	0.6	4
27	Primary stage of the reaction between ozone and chloride ions in aqueous solution: Oxidation of chloride ions with ozone through the mechanism of oxygen atom transfer. Russian Journal of Physical Chemistry A, 2012, 86, 519-522.	0.6	23
28	Primary stage of the reaction between ozone and chloride ions in aqueous solution: Can chloride ion oxidation by ozone proceed via electron transfer mechanism?. Russian Journal of Physical Chemistry A, 2012, 86, 584-589.	0.6	8
29	Stoichiometry and products of ozone reaction with chloride ion in an acidic medium. Russian Journal of Physical Chemistry A, 2012, 86, 757-762.	0.6	13
30	Synthesis of peroxy-radical condensates from mixtures of H2+O2. Moscow University Chemistry Bulletin, 2011, 66, 1-7.	0.6	4
31	Synthesis of Hydrogen Polyoxides H ₂ O ₄ and H ₂ O ₃ and Their Characterization by Raman Spectroscopy. European Journal of Inorganic Chemistry, 2011, 2011, 5144-5150.	2.0	32
32	Chemical reaction kinetics in the afterglow of electrical discharges in hydrogen-oxygen systems (H2 +) Tj ETQq0	0 0 rgBT /0	Dverlock 10 T
33	The solubility of ozone in aqueous solutions of sulfuric, phosphoric, and perchloric acids. Russian Journal of Physical Chemistry A, 2008, 82, 1126-1131.	0.6	21
34	The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride. Russian Journal of Physical Chemistry A, 2008, 82, 2045-2050.	0.6	25
35	Interaction between ozone and the chloride ion in sulfuric acid solutions up to 6-M concentration. Kinetics and Catalysis, 2006, 47, 682-685.	1.0	12

³⁶The oxidation of chlorine ions under the joint action of ozone and permanganate ions. Russian0.69Journal of Physical Chemistry A, 2006, 80, 557-561.

#	Article	IF	CITATIONS
37	The kinetics of reaction between permanganate and chlorine ions in acid solutions. Russian Journal of Physical Chemistry A, 2006, 80, 726-731.	0.6	6