Joaquin Trinanes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7913129/publications.pdf

Version: 2024-02-01

186265 233421 5,815 47 28 45 citations h-index g-index papers 48 48 48 6513 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, The, 2021, 397, 129-170.	13.7	1,030
2	The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, The, 2019, 394, 1836-1878.	13.7	905
3	The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, The, 2021, 398, 1619-1662.	13.7	669
4	The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet, The, 2018, 392, 2479-2514.	13.7	595
5	Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change, 2013, 3, 73-77.	18.8	473
6	Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends in Microbiology, 2017, 25, 76-84.	7.7	282
7	Climate anomalies and the increasing risk of Vibrio parahaemolyticus and Vibrio vulnificus illnesses. Food Research International, 2010, 43, 1780-1790.	6.2	196
8	Environmental Determinants of the Occurrence and Distribution of <i>Vibrio parahaemolyticus</i> in the Rias of Galicia, Spain. Applied and Environmental Microbiology, 2008, 74, 265-274.	3.1	127
9	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	2.5	123
10	Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, 2003, 84, 573.	0.1	119
11	Heat Wave–Associated Vibriosis, Sweden and Finland, 2014. Emerging Infectious Diseases, 2016, 22, 1216-1220.	4.3	112
12	Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea. Progress in Oceanography, 2018, 165, 205-214.	3.2	101
13	Emergence of Asiatic Vibrio Diseases in South America in Phase With El Niñ0. Epidemiology, 2008, 19, 829-837.	2.7	91
14	Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophysical Research Letters, 2013, 40, 6171-6175.	4.0	90
15	Environmental Suitability of <i>Vibrio</i> Infections in a Warming Climate: An Early Warning System. Environmental Health Perspectives, 2017, 125, 107004.	6.0	87
16	Sea–air flux of CO2 in the Caribbean Sea estimated using in situ and remote sensing data. Remote Sensing of Environment, 2004, 89, 309-325.	11.0	72
17	Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean. Chaos, 2015, 25, 087412.	2.5	62
18	Genomic Variation and Evolution of <i>Vibrio parahaemolyticus</i> ST36 over the Course of a Transcontinental Epidemic Expansion. MBio, 2017, 8, .	4.1	53

#	Article	IF	Citations
19	Epidemiological investigation of a foodborne outbreak in Spain associated with U.S. West Coast genotypes of Vibrio parahaemolyticus. SpringerPlus, 2016, 5, 87.	1.2	47
20	Improving transport predictions of pelagic Sargassum. Journal of Experimental Marine Biology and Ecology, 2020, 529, 151398.	1.5	39
21	Algorithms to estimate the carbon dioxide uptake in the northern North Atlantic using shipboard observations, satellite and ocean analysis data. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 630-639.	1.4	38
22	Future scenarios of risk of Vibrio infections in a warming planet: a global mapping study. Lancet Planetary Health, The, 2021, 5, e426-e435.	11.4	38
23	The impact of changing wind speeds on gas transfer and its effect on global airâ€sea CO ₂ fluxes. Global Biogeochemical Cycles, 2017, 31, 961-974.	4.9	36
24	Epidemic Dynamics of <i>Vibrio parahaemolyticus </i> Illness in a Hotspot of Disease Emergence, Galicia, Spain. Emerging Infectious Diseases, 2018, 24, 852-859.	4.3	36
25	Air–sea CO2 fluxes in the Caribbean Sea from 2002–2004. Journal of Marine Systems, 2007, 66, 272-284.	2.1	34
26	Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. Journal of Operational Oceanography, 2016, 9, 126-138.	1.2	31
27	More Than 50 Years of Successful Continuous Temperature Section Measurements by the Global Expendable Bathythermograph Network, Its Integrability, Societal Benefits, and Future. Frontiers in Marine Science, 2019, 6, .	2.5	31
28	The effect of wind speed products and wind speed-gas exchange relationships on interannual variability of the air-sea CO2 gas transfer velocity. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 95-106.	1.6	28
29	Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil spill. Continental Shelf Research, 2014, 77, 118-131.	1.8	28
30	ls El Niñ0 a long-distance corridor for waterborne disease?. Nature Microbiology, 2016, 1, 16018.	13.3	27
31	A Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer CO2 Measurements. Frontiers in Marine Science, 2019, 6, .	2.5	26
32	Observation and quantification of inertial effects on the drift of floating objects at the ocean surface. Physics of Fluids, 2020, 32, .	4.0	25
33	Origins and colonization history of pandemic <i>Vibrio parahaemolyticus</i> in South America. Molecular Ecology, 2010, 19, 3924-3937.	3.9	20
34	Tracking the impacts of climate change on human health via indicators: lessons from the Lancet Countdown. BMC Public Health, 2022, 22, 663.	2.9	20
35	Diurnal variations of surface oceanpCO2and sea-air CO2flux evaluated using remotely sensed data. Geophysical Research Letters, 2004, 31, .	4.0	17
36	Clustering of Marineâ€Debris―and <i>Sargassum</i> â€Like Drifters Explained by Inertial Particle Dynamics. Geophysical Research Letters, 2020, 47, e2020GL089874.	4.0	17

#	Article	IF	CITATIONS
37	Variability of the Deepwater Horizon Surface Oil Spill Extent and Its Relationship to Varying Ocean Currents and Extreme Weather Conditions. The Reacting Atmosphere, 2015, , 1-22.	0.8	16
38	Large Decadal Changes in Airâ€Sea CO ₂ Fluxes in the Caribbean Sea. Journal of Geophysical Research: Oceans, 2019, 124, 6960-6982.	2.6	14
39	Monitoring pelagic <i>Sargassum </i> inundation potential for coastal communities. Journal of Operational Oceanography, 2023, 16, 48-59.	1.2	14
40	Enduring Lagrangian coherence of a Loop Current ring assessed using independent observations. Scientific Reports, 2018, 8, 11275.	3.3	13
41	Carriers of <i>Sargassum</i> and mechanism for coastal inundation in the Caribbean Sea. Physics of Fluids, 2022, 34, .	4.0	13
42	The new tools revolutionizing Vibrio science. Environmental Microbiology, 2020, 22, 4096-4100.	3.8	8
43	The effect of wind speed products and wind speedâ€"gas exchange relationships on interannual variability of the airâ€"sea CO2gas transfer velocity. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 95-106.	1.6	4
44	A 17-year dataset of surface water fugacity of CO& t;sub>2& t;/sub> along with calculated pH, aragonite saturation state and air–sea CO& t;sub>2& t;/sub> fluxes in the northern Caribbean Sea. Earth System Science Data, 2020, 12, 1489-1509.	9.9	3
45	A Sensor Observation Service Based on OGC Specifications for a Meteorological SDI in Galicia. Lecture Notes in Computer Science, 2010, , 43-52.	1.3	2
46	Ocean color product intersensor evaluation for HAB bulletins. , 2006, , .		0
47	An Integrated Solution to Store, Manage and Work with Datasets Focused on Metadata in the Retelab Grid Project. Lecture Notes in Computer Science, 2009, , 491-494.	1.3	O