
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7913090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Azahomofullerenes as New n-Type Acceptor Materials for Efficient and Stable Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 20296-20304.	4.0	13
2	Entropy of the Land Parcel Mosaic as a Measure of the Degree of Urbanization. Entropy, 2021, 23, 543.	1.1	4
3	Gold Nanoparticles Functionalized with Fullerene Derivative as an Effective Interface Layer for Improving the Efficiency and Stability of Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2001144.	1.9	14
4	A Daily Water Table Depth Computing Model for Poorly Drained Soils. Wetlands, 2019, 39, 39-54.	0.7	6
5	A Seedless Method for Gold Nanoparticle Growth inside a Silica Matrix: Fabrication of Materials Capable of Thirdâ€Harmonic Generation in the Nearâ€Infrared. ChemPlusChem, 2019, 84, 525-533.	1.3	2
6	Gold Nanoparticles Functionalized with Fully Conjugated Fullerene C ₆₀ Derivatives as a Material with Exceptional Capability of Absorbing Electrons. Journal of Physical Chemistry C, 2019, 123, 6229-6240.	1.5	8
7	Synthesis of a Free-Standing Monolayer of Covalently Bonded Gold Nanoparticles. Chemistry of Materials, 2016, 28, 5304-5313.	3.2	22
8	Tailoring Optical Properties of Ï€â€Conjugated Statistical Coâ€Oligomers Composed of 3â€Pentylthiophene and 3â€{(<i>E</i>)â€2â€(1â€Naphthyl)Åvinyl]thiophene through the Monomer Ratio in the Main Chain. Macromolecular Chemistry and Physics, 2016, 217, 562-569.	1.1	1
9	Triggering autocatalytic reaction by host–guest interactions. Chemical Communications, 2016, 52, 4191-4194.	2.2	20
10	Gold–Oxoborate Nanocomposites and Their Biomedical Applications. ACS Applied Materials & Interfaces, 2015, 7, 3931-3939.	4.0	16
11	Morphological changes of gold nanoparticles due to adsorption onto silicon substrate and oxygen plasma treatment. RSC Advances, 2014, 4, 12729-12736.	1.7	14
12	A "wrap-and-wrest―mechanism of fluorescence quenching of CdSe/ZnS quantum dots by surfactant molecules. Nanoscale, 2013, 5, 9908.	2.8	14
13	Nanoparticles in a Capillary Trap: Dynamic Self-Assembly at Fluid Interfaces. ACS Nano, 2013, 7, 8833-8839.	7.3	42
14	A "nano-windmill―driven by a flux of water vapour: a comparison to the rotating ATPase. Nanoscale, 2013, 5, 9732.	2.8	41
15	Stable, ordered multilayers of partially fluorinated bolaamphiphiles at the air–water interface. Soft Matter, 2012, 8, 5262.	1.2	7
16	Close-packed monolayers of charged Janus-type nanoparticles at the air–water interface. Journal of Colloid and Interface Science, 2012, 375, 180-186.	5.0	45
17	Autonomous Selfâ€Assembly of Ionic Nanoparticles into Hexagonally Closeâ€Packed Lattices at a Planar Oil–Water Interface. Chemistry - A European Journal, 2012, 18, 2235-2238.	1.7	10
18	Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications. Journal of Materials Chemistry, 2011, 21, 8662.	6.7	65

#	Article	IF	CITATIONS
19	Ionic Strength-Controlled Deposition of Charged Nanoparticles on a Solid Substrate. Journal of Physical Chemistry C, 2011, 115, 19096-19103.	1.5	40
20	New One-Pot Technique to Introduce Charged Nanoparticles into a Lyotropic Liquid Crystal Matrix. Langmuir, 2011, 27, 3937-3944.	1.6	3
21	Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: influence of the depletion layer. Soft Matter, 2011, 7, 7181.	1.2	94
22	Gold Micro-Flowers: One-Step Fabrication of Efficient, Highly Reproducible Surface-Enhanced Raman Spectroscopy Platform. Plasmonics, 2011, 6, 697-704.	1.8	23
23	Aggregation and Layering Transitions in Thin Films of Xâ€, Tâ€, and Anchorâ€Shaped Bolaamphiphiles at the Air–Water Interface. Chemistry - A European Journal, 2011, 17, 5861-5873.	1.7	14
24	Polymer-induced ordering and phase separation in ionic surfactants. Journal of Colloid and Interface Science, 2010, 342, 93-102.	5.0	11
25	Single-Walled Carbon Nanotube/Lyotropic Liquid Crystal Hybrid Materials Fabricated by a Phase Separation Method in the Presence of Polyelectrolyte. Langmuir, 2010, 26, 8821-8828.	1.6	24
26	Publisher's Note: From complex structures to complex processes: Percolation theory applied to the formation of a city [Phys. Rev. E80, 037102 (2009)]. Physical Review E, 2009, 80, .	0.8	0
27	From complex structures to complex processes: Percolation theory applied to the formation of a city. Physical Review E, 2009, 80, 037102.	0.8	16
28	Mechanism of Reactive Wetting and Direct Visual Determination of the Kinetics of Self-Assembled Monolayer Formation. Langmuir, 2009, 25, 9-12.	1.6	11
29	Mechanical and electrical properties of nanostructured â€~plastic metals'. Journal of Non-Crystalline Solids, 2009, 355, 1313-1317.	1.5	2
30	Dynamic charge separation in a liquid crystalline meniscus. Soft Matter, 2009, 5, 2352-2360.	1.2	3
31	Universal rules for fragmentation of land by humans. Landscape Ecology, 2008, 23, 1013-1022.	1.9	37
32	Dynamics of Phase Separation in Polymer Blends Revisited: Morphology, Spinodal, Noise, and Nucleation. Macromolecular Theory and Simulations, 2008, 17, 263-273.	0.6	26
33	Late Stage of the Phase-Separation Process: Coalescence-Induced Coalescence, Gravitational Sedimentation, and Collective Evaporation Mechanisms. Langmuir, 2008, 24, 6433-6440.	1.6	7
34	Plastic and Moldable Metals by Self-Assembly of Sticky Nanoparticle Aggregates. Science, 2007, 316, 261-264.	6.0	270
35	Principles and Implementations of Dissipative (Dynamic) Self-Assembly. Journal of Physical Chemistry B, 2006, 110, 2482-2496.	1.2	268
36	Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice. Science, 2006, 312, 420-424.	6.0	841

#	Article	IF	CITATIONS
37	Kinetics of Contact Electrification between Metals and Polymers. Journal of Physical Chemistry B, 2005, 109, 20511-20515.	1.2	45
38	Architecture and Evolution of Organic Chemistry. Angewandte Chemie - International Edition, 2005, 44, 7263-7269.	7.2	115
39	Self-organization of planar microlenses by periodic precipitation. Journal of Applied Physics, 2005, 97, 126102.	1.1	19
40	Wave Optics of Liesegang Rings. Physical Review Letters, 2005, 94, 018303.	2.9	36
41	Amplification of Changes of a Thin Film's Macromolecular Structure into Macroscopic Reactionâ^'Diffusion Patterns. Journal of the American Chemical Society, 2005, 127, 6936-6937.	6.6	9
42	One-Step Multilevel Microfabrication by Reactionâ ^{^•} Diffusion. Langmuir, 2005, 21, 418-423.	1.6	43
43	Micro- and nanotechnology via reaction–diffusion. Soft Matter, 2005, 1, 114.	1.2	196
44	Micropatterning Chemical Oscillations:Â Waves, Autofocusing, and Symmetry Breaking. Journal of the American Chemical Society, 2005, 127, 15943-15948.	6.6	20
45	The unphysical pinning of the domain growth during the separation of homopolymer blends near the spinodal. Journal of Chemical Physics, 2004, 120, 5802-5808.	1.2	3
46	Arrays of microlenses of complex shapes prepared by reaction-diffusion in thin films of ionically doped gels. Applied Physics Letters, 2004, 85, 1871-1873.	1.5	19
47	Multicolour micropatterning of thin films of dry gels. Nature Materials, 2004, 3, 729-735.	13.3	86
48	Self-assembly of polymeric microspheres of complex internal structures. Nature Materials, 2004, 4, 93-97.	13.3	73
49	A Morphological Study of the Formation of PdHxon Thin Palladium Films. Journal of Physical Chemistry B, 2004, 108, 7373-7376.	1.2	4
50	Effects of Surface Modification and Moisture on the Rates of Charge Transfer between Metals and Organic Materials. Journal of Physical Chemistry B, 2004, 108, 20296-20302.	1.2	104
51	Morphological changes during the order-disorder transition in the two- and three-dimensional systems of scalar nonconserved order parameters. Physical Review E, 2002, 66, 046121.	0.8	18
52	Morphology from the maximum entropy principle: Domains in a phase ordering system and a crack pattern in broken glass. Physical Review E, 2002, 65, 057105.	0.8	4
53	Quench–jump sequence in phase separation in polymer blends. Journal of Chemical Physics, 2002, 117, 1886-1892.	1.2	17
54	Morphology of Surfaces in Mesoscopic Polymers, Surfactants, Electrons, or Reaction-Diffusion Systems: Methods, Simulations, and Measurements, Advances in Chemical Physics, 2002 – 141-239	0.3	28

#	Article	IF	CITATIONS
55	Scaling of the Euler Characteristic, Surface Area, and Curvatures in the Phase Separating or Ordering Systems. Physical Review Letters, 2001, 86, 240-243.	2.9	35
56	Orientational phenomena in a plastic flow of a two-dimensional square crystal. Physica A: Statistical Mechanics and Its Applications, 2000, 282, 65-76.	1.2	9
57	Phenomenological approach to viscosity of a two-dimensional square crystal. Physica A: Statistical Mechanics and Its Applications, 2000, 284, 59-67.	1.2	2
58	Viscous properties of nematic liquid crystals composed of biaxial molecules. Physical Review E, 1998, 58, 1955-1966.	0.8	26
59	Viscous properties of biaxial nematic liquid crystals: The method of calculation of the Leslie viscosity coefficients. Physical Review E, 1997, 55, 2902-2915.	0.8	11
60	Viscous properties of binary mixtures of nematic liquid crystals. Physical Review E, 1996, 53, 721-726.	0.8	5
61	Microscopic Approach to Theory of Biaxial Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 1995, 265, 371-385.	0.3	13
62	Donor–Acceptor Stenhouse Adducts for Stimuli-Responsive Self-Assembly of Gold Nanoparticles into Semiconducting Thin Films. Journal of Physical Chemistry C, O, , .	1.5	2

⁶² Semiconducting Thin Films. Journal of Physical Chemistry C, 0, , .