Melissa A Kinney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7912776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Reports, 2022, 39, 110587.	2.9	12
2	Lin28 paralogs regulate lung branching morphogenesis. Cell Reports, 2021, 36, 109408.	2.9	5
3	Finding the volume dial in stem cell manufacturing: Bioinspired and bioengineered approaches to scale up. Current Opinion in Biomedical Engineering, 2021, 20, 100356.	1.8	Ο
4	Lin28b-Let-7-PRC1 Axis Guides Developmental Maturation of the Hematopoietic System. Blood, 2021, 138, 21-21.	0.6	1
5	Engineered multicellular niches for pluripotent stem cell–derived immunotherapy. Current Opinion in Biomedical Engineering, 2020, 16, 19-26.	1.8	5
6	A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology, 2019, 37, 810-818.	9.4	18
7	Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 2019, 10, 168.	5.8	55
8	Regulation of embryonic haematopoietic multipotency by EZH1. Nature, 2018, 553, 506-510.	13.7	70
9	Optimized Beta-Globin Expression and Enucleation from Induced Red Blood Cells for In Vitro Modeling of Sickle Cell Disease. Blood, 2018, 132, 2359-2359.	0.6	0
10	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	5.8	87
11	Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche. Scientific Reports, 2015, 4, 4290.	1.6	15
12	Engineering Three-Dimensional Stem Cell Morphogenesis for the Development of Tissue Models and Scalable Regenerative Therapeutics. Annals of Biomedical Engineering, 2014, 42, 352-367.	1.3	71
13	Temporal Modulation of β-Catenin Signaling by Multicellular Aggregation Kinetics Impacts Embryonic Stem Cell Cardiomyogenesis. Stem Cells and Development, 2013, 22, 2665-2677.	1.1	23
14	Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends in Biotechnology, 2013, 31, 78-84.	4.9	44
15	Spatial Pattern Dynamics of 3D Stem Cell Loss of Pluripotency via Rules-Based Computational Modeling. PLoS Computational Biology, 2013, 9, e1002952.	1.5	31
16	Hydrodynamic modulation of pluripotent stem cells. Stem Cell Research and Therapy, 2012, 3, 45.	2.4	48
17	Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size. Integrative Biology (United Kingdom), 2012, 4, 641.	0.6	39
18	Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 63-71.	1.5	85

#	Article	IF	CITATIONS
19	The Multiparametric Effects of Hydrodynamic Environments on Stem Cell Culture. Tissue Engineering - Part B: Reviews, 2011, 17, 249-262.	2.5	126
20	Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnology and Bioengineering, 2010, 105, 611-626.	1.7	95