List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7912264/publications.pdf Version: 2024-02-01

YINCWELL

#	Article	IF	CITATIONS
1	Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis, 2016, 6, 5887-5903.	5.5	1,077
2	Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359, 206-210.	6.0	836
3	Gas Adsorption and Storage in Metalâ^'Organic Framework MOF-177. Langmuir, 2007, 23, 12937-12944.	1.6	528
4	Controllable design of tunable nanostructures inside metal–organic frameworks. Chemical Society Reviews, 2017, 46, 4614-4630.	18.7	516
5	A Highly Active Heterogeneous Palladium Catalyst for the Suzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. Angewandte Chemie - International Edition, 2010, 49, 4054-4058.	7.2	487
6	Significantly Enhanced Hydrogen Storage in Metalâ^'Organic Frameworks via Spillover. Journal of the American Chemical Society, 2006, 128, 726-727.	6.6	477
7	Hydrogen Storage in Metalâ^'Organic Frameworks by Bridged Hydrogen Spillover. Journal of the American Chemical Society, 2006, 128, 8136-8137.	6.6	473
8	Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR. ACS Catalysis, 2018, 8, 7879-7888.	5.5	394
9	Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 1575-1583.	6.6	348
10	Metalâ^'Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2010, 114, 13362-13369.	1.5	292
11	Base-Free Oxidation of Alcohols to Esters at Room Temperature and Atmospheric Conditions using Nanoscale Co-Based Catalysts. ACS Catalysis, 2015, 5, 1850-1856.	5.5	291
12	Nanoreactor of MOF-Derived Yolk–Shell Co@C–N: Precisely Controllable Structure and Enhanced Catalytic Activity. ACS Catalysis, 2018, 8, 1417-1426.	5.5	279
13	Hydrogen storage in metalâ€organic and covalentâ€organic frameworks by spillover. AICHE Journal, 2008, 54, 269-279.	1.8	248
14	Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.	9.5	242
15	Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 2010, 46, 2280.	2.2	240
16	Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catalysis, 2020, 10, 6579-6586.	5.5	240
17	Tuning the moisture stability of metal–organic frameworks by incorporating hydrophobic functional groups at different positions of ligands. Chemical Communications, 2011, 47, 7377.	2.2	230
18	Metalâ^'organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chemical Science, 2014, 5, 3708-3714.	3.7	225

#	Article	lF	CITATIONS
19	Selective Oxidation of Saturated Hydrocarbons Using Au–Pd Alloy Nanoparticles Supported on Metal–Organic Frameworks. ACS Catalysis, 2013, 3, 647-654.	5.5	211
20	Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chemical Engineering Journal, 2014, 239, 226-232.	6.6	208
21	A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. Journal of Materials Chemistry A, 2014, 2, 4722-4730.	5.2	202
22	MOFs-Templated Co@Pd Core–Shell NPs Embedded in N-Doped Carbon Matrix with Superior Hydrogenation Activities. ACS Catalysis, 2015, 5, 5264-5271.	5.5	198
23	MOF-Derived Isolated Fe Atoms Implanted in N-Doped 3D Hierarchical Carbon as an Efficient ORR Electrocatalyst in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2019, 11, 25976-25985.	4.0	196
24	High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation. Journal of Catalysis, 2012, 291, 36-43.	3.1	195
25	Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 24116-24125.	5.2	191
26	Controllable Encapsulation of "Clean―Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts. Angewandte Chemie - International Edition, 2016, 55, 5019-5023.	7.2	190
27	Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chemistry, 2016, 18, 1061-1069.	4.6	188
28	Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal, 2016, 298, 191-197.	6.6	182
29	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	18.7	176
30	Hydrogen Storage in Low Silica Type X Zeolites. Journal of Physical Chemistry B, 2006, 110, 17175-17181.	1.2	174
31	Enhanced stability and CO2 affinity of a UiO-66 type metal–organic framework decorated with dimethyl groups. Dalton Transactions, 2012, 41, 9283.	1.6	174
32	Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts. Green Chemistry, 2015, 17, 4183-4188.	4.6	169
33	Hydrogen Storage on Platinum Nanoparticles Doped on Superactivated Carbon. Journal of Physical Chemistry C, 2007, 111, 11086-11094.	1.5	164
34	Ordered Macroporous Carbonous Frameworks Implanted with CdS Quantum Dots for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2102690.	11.1	164
35	Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chemistry, 2016, 18, 3152-3157.	4.6	162
36	Inverse and highly selective separation of CO ₂ /C ₂ H ₂ on a thulium–organic framework. Journal of Materials Chemistry A, 2020, 8, 11933-11937.	5.2	153

#	Article	IF	CITATIONS
37	Bifunctional N-Doped Co@C Catalysts for Base-Free Transfer Hydrogenations of Nitriles: Controllable Selectivity to Primary Amines vs Imines. ACS Catalysis, 2017, 7, 275-284.	5.5	151
38	Palladium supported on an acidic metal–organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chemistry, 2013, 15, 230-235.	4.6	148
39	Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. Journal of Materials Chemistry A, 2017, 5, 9937-9945.	5.2	143
40	Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS Nano, 2019, 13, 7800-7810.	7.3	143
41	Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chemical Engineering Science, 2016, 148, 275-281.	1.9	141
42	Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 424, 213488.	9.5	137
43	Greening the Processes of Metal–Organic Framework Synthesis and their Use in Sustainable Catalysis. ChemSusChem, 2017, 10, 3165-3187.	3.6	132
44	Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 6165-6174.	5.5	130
45	Seed-mediated growth of MOF-encapsulated Pd@Ag core–shell nanoparticles: toward advanced room temperature nanocatalysts. Chemical Science, 2016, 7, 228-233.	3.7	128
46	A molecular Pd(<scp>ii</scp>) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chemistry, 2014, 16, 3978.	4.6	127
47	Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: highly active catalysts for hydrogenation reactions. Journal of Materials Chemistry A, 2016, 4, 10254-10262.	5.2	127
48	Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Applied Thermal Engineering, 2015, 84, 118-125.	3.0	125
49	Ammonium iodide-induced sulfonylation of alkenes with DMSO and water toward the synthesis of vinyl methyl sulfones. Chemical Communications, 2015, 51, 210-212.	2.2	124
50	In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium–organic framework capable of selective sensing of small molecules. CrystEngComm, 2010, 12, 4372.	1.3	121
51	Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation. Catalysis Communications, 2011, 12, 875-879.	1.6	120
52	NH ₄ I-Mediated Three-Component Coupling Reaction: Metal-Free Synthesis of β-Alkoxy Methyl Sulfides from DMSO, Alcohols, and Styrenes. Organic Letters, 2015, 17, 1038-1041.	2.4	120
53	Encapsulation of a Metal–Organic Polyhedral in the Pores of a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1138-1141.	6.6	114
54	A Tuneable Bifunctional Waterâ€Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. Advanced Synthesis and Catalysis, 2011, 353, 3107-3113.	2.1	112

#	Article	IF	CITATIONS
55	Dual-Metal Hetero-Single-Atoms with Different Coordination for Efficient Synergistic Catalysis. Journal of the American Chemical Society, 2021, 143, 16068-16077.	6.6	110
56	Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon, 2014, 69, 294-301.	5.4	106
57	Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with "one stone―as Z-scheme photocatalysts for highly efficient hydrogen production. Journal of Materials Chemistry A, 2018, 6, 19631-19642.	5.2	106
58	Easy Access to Amides through Aldehydic C–H Bond Functionalization Catalyzed by Heterogeneous Co-Based Catalysts. ACS Catalysis, 2015, 5, 884-891.	5.5	104
59	Immobilization of Pd(II) on MOFs as a highly active heterogeneous catalyst for Suzuki–Miyaura and Ullmann-type coupling reactions. Catalysis Today, 2015, 245, 122-128.	2.2	102
60	Kinetics and Mechanistic Model for Hydrogen Spillover on Bridged Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2007, 111, 3405-3411.	1.5	101
61	Amorphous TiO ₂ @NH ₂ -MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chemical Communications, 2018, 54, 1917-1920.	2.2	101
62	Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chemical Engineering Journal, 2017, 330, 736-745.	6.6	97
63	Significant promoting effects of Lewis acidity on Au–Pd systems in the selective oxidation of aromatic hydrocarbons. Chemical Communications, 2012, 48, 8431.	2.2	96
64	Transition-metal-free highly chemo- and regioselective arylation of unactivated arenes with aryl halides over recyclable heterogeneous catalysts. Chemical Communications, 2012, 48, 2033.	2.2	95
65	Transfer hydrogenation of unsaturated bonds in the absence of base additives catalyzed by a cobalt-based heterogeneous catalyst. Chemical Communications, 2015, 51, 2331-2334.	2.2	95
66	In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 12354-12360.	5.2	93
67	Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chemical Engineering Science, 2017, 162, 192-202.	1.9	92
68	A covalent organic framework-based route to the in situ encapsulation of metal nanoparticles in N-rich hollow carbon spheres. Chemical Science, 2016, 7, 6015-6020.	3.7	90
69	Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts. Chemical Engineering Science, 2017, 166, 66-76.	1.9	90
70	Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis. Journal of Electroanalytical Chemistry, 2013, 709, 65-69.	1.9	86
71	In situ one-step synthesis of metal–organic framework encapsulated naked Pt nanoparticles without additional reductants. Journal of Materials Chemistry A, 2015, 3, 8028-8033.	5.2	86
72	Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations. Journal of Materials Chemistry A, 2016, 4, 5247-5257.	5.2	86

#	Article	IF	CITATIONS
73	Efficient one-pot fructose to DFF conversion using sulfonated magnetically separable MOF-derived Fe ₃ O ₄ (111) catalysts. Green Chemistry, 2017, 19, 647-655.	4.6	86
74	Encapsulation of Mono―or Bimetal Nanoparticles Inside Metal–Organic Frameworks via In situ Incorporation of Metal Precursors. Small, 2015, 11, 2642-2648.	5.2	85
75	Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived co-based catalysts. Journal of Molecular Catalysis A, 2016, 420, 56-65.	4.8	85
76	One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chemical Communications, 2014, 50, 14752-14755.	2.2	84
77	Effect of calcium salts on isosynthesis over ZrO2 catalysts. Journal of Molecular Catalysis A, 2001, 175, 267-275.	4.8	79
78	One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program. Journal of Materials Chemistry A, 2015, 3, 15259-15264.	5.2	78
79	Nanocomposites of Platinum/Metal–Organic Frameworks Coated with Metal–Organic Frameworks with Remarkably Enhanced Chemoselectivity for Cinnamaldehyde Hydrogenation. ChemCatChem, 2016, 8, 946-951.	1.8	76
80	Controlled growth of dense and ordered metal–organic framework nanoparticles on graphene oxide. Chemical Communications, 2015, 51, 3874-3877.	2.2	75
81	General Immobilization of Ultrafine Alloyed Nanoparticles within Metal–Organic Frameworks with High Loadings for Advanced Synergetic Catalysis. ACS Central Science, 2019, 5, 176-185.	5.3	75
82	Multienzymeâ€Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy. Small, 2021, 17, e2005865.	5.2	74
83	A microporous, moisture-stable, and amine-functionalized metal–organic framework for highly selective separation of CO ₂ from CH ₄ . Chemical Communications, 2012, 48, 1135-1137.	2.2	73
84	Effects of redox properties and acid–base properties on isosynthesis over ZrO2-based catalysts. Journal of Catalysis, 2004, 221, 584-593.	3.1	72
85	Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. Journal of Materials Chemistry, 2012, 22, 10834.	6.7	69
86	Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 13805-13814.	3.2	66
87	Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Research, 2017, 10, 3543-3556.	5.8	65
88	Nanoscale Co-based catalysts for low-temperature CO oxidation. Catalysis Science and Technology, 2015, 5, 1014-1020.	2.1	64
89	Nitrogenâ€Doped Carbon Composites with Ordered Macropores and Hollow Walls. Angewandte Chemie - International Edition, 2021, 60, 23729-23734.	7.2	64
90	Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Applied Catalysis B: Environmental, 2021, 292, 120174.	10.8	64

#	Article	IF	CITATIONS
91	Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications. Chemical Science, 2018, 9, 1854-1859.	3.7	62
92	Solventless Oxidative Coupling of Amines to Imines by Using Transitionâ€Metalâ€Free Metal–Organic Frameworks. ChemSusChem, 2014, 7, 1684-1688.	3.6	61
93	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 11224-11231.	5.2	61
94	Hydrogen Storage on Carbon Doped with Platinum Nanoparticles Using Plasma Reduction. Industrial & Engineering Chemistry Research, 2007, 46, 8277-8281.	1.8	60
95	Chemoselective Hydrogenation of Cinnamaldehyde over a Pt-Lewis Acid Collaborative Catalyst under Ambient Conditions. Industrial & Engineering Chemistry Research, 2015, 54, 1487-1497.	1.8	60
96	From Alkyl Aromatics to Aromatic Esters: Efficient and Selective CH Activation Promoted by a Bimetallic Heterogeneous Catalyst. ChemSusChem, 2012, 5, 1892-1896.	3.6	58
97	Few-layered 1T-MoS ₂ -modified ZnCoS solid-solution hollow dodecahedra for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8472-8484.	5.2	56
98	"Click―post-functionalization of a metal–organic framework for engineering active single-site heterogeneous Ru(<scp>iii</scp>) catalysts. Chemical Communications, 2015, 51, 9884-9887.	2.2	55
99	Highly dispersed Pt in MIL-101: An efficient catalyst for the hydrogenation of nitroarenes. Catalysis Communications, 2013, 41, 56-59.	1.6	54
100	Advanced 3D Hollow-Out ZnZrO@C Combined with Hierarchical Zeolite for Highly Active and Selective CO Hydrogenation to Aromatics. ACS Catalysis, 2020, 10, 7177-7187.	5.5	54
101	Controllable Synthesis of Ultrathin Defectâ€Rich LDH Nanoarrays Coupled with MOFâ€Derived Coâ€NC Microarrays for Efficient Overall Water Splitting. Small, 2022, 18, .	5.2	54
102	Metal–organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. RSC Advances, 2013, 4, 2414-2420.	1.7	52
103	Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 12240-12246.	5.2	52
104	Solventless hydrogenation of benzene to cyclohexane over a heterogeneous Ru–Pt bimetallic catalyst. Chemical Engineering Science, 2015, 122, 350-359.	1.9	52
105	Metal–organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38, 1108-1126.	6.9	52
106	Synthetic Factors Affecting the Scalable Production of Zeolitic Imidazolate Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 3632-3646.	3.2	52
107	A novel mechanochemical method for reconstructing the moisture-degraded HKUST-1. Chemical Communications, 2015, 51, 10835-10838.	2.2	51
108	A Co-doped porous niobium nitride nanogrid as an effective oxygen reduction catalyst. Journal of Materials Chemistry A, 2017, 5, 14278-14285.	5.2	51

#	Article	IF	CITATIONS
109	Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chemical Engineering Journal, 2017, 307, 537-543.	6.6	51
110	Solvent-Driven Selectivity Control to Either Anilines or Dicyclohexylamines in Hydrogenation of Nitroarenes over a Bifunctional Pd/MIL-101 Catalyst. ACS Catalysis, 2018, 8, 10641-10648.	5.5	51
111	A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 20310-20316.	5.2	49
112	Ultrathin Nanosheet Assembled Multishelled Superstructures for Photocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 4517-4527.	7.3	49
113	Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst. RSC Advances, 2012, 2, 5528.	1.7	48
114	Carbonylative Sonogashira coupling of terminal alkynes with aryl iodides under atmospheric pressure of CO using Pd(<scp>ii</scp>)@MOF as the catalyst. Catalysis Science and Technology, 2014, 4, 3261.	2.1	47
115	Insights into the activity, selectivity and stability of heterogeneous catalysts in the continuous flow hydroconversion of furfural. Catalysis Science and Technology, 2016, 6, 4705-4711.	2.1	45
116	Effects of oxygenates and moisture on adsorptive desulfurization of liquid fuels with Cu(I)Y zeolite. Catalysis Today, 2006, 116, 512-518.	2.2	44
117	Effect of Textural Properties on the Adsorption and Desorption of Toluene on the Metal-Organic Frameworks HKUST-1 and MIL-101. Adsorption Science and Technology, 2013, 31, 325-339.	1.5	44
118	A novel carbonized polydopamine (Câ€₽DA) adsorbent with high CO ₂ adsorption capacity and water vapor resistance. AICHE Journal, 2016, 62, 3730-3738.	1.8	43
119	Encapsulation of metal nanostructures into metal–organic frameworks. Dalton Transactions, 2018, 47, 3663-3668.	1.6	43
120	Controllable Encapsulation of "Clean―Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts. Angewandte Chemie, 2016, 128, 5103-5107.	1.6	42
121	Phase-controllable synthesis of MOF-templated maghemite–carbonaceous composites for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 3571-3582.	5.2	42
122	Efficient and selective green oxidation of alcohols by MOF-derived magnetic nanoparticles as a recoverable catalyst. RSC Advances, 2016, 6, 26921-26928.	1.7	41
123	Ethaneâ€selective carbon composites CPDA@Aâ€ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity. AICHE Journal, 2018, 64, 3390-3399.	1.8	41
124	Efficient conversion of CO2 with olefins into cyclic carbonates via a synergistic action of I2 and base electrochemically generated in situ. Electrochemistry Communications, 2013, 34, 242-245.	2.3	40
125	Controlled Growth of Monodisperse Ferrite Octahedral Nanocrystals for Biomass-Derived Catalytic Applications. ACS Catalysis, 2017, 7, 2948-2955.	5.5	40
126	Mainâ€Group Metal Singleâ€Atomic Regulators in Dualâ€Metal Catalysts for Enhanced Electrochemical CO ₂ Reduction. Small, 2022, 18, e2201391.	5.2	39

#	Article	IF	CITATIONS
127	Iron oxide functionalised MIL-101 materials in aqueous phase selective oxidations. Applied Catalysis A: General, 2013, 455, 261-266.	2.2	38
128	A novel DOBDC-functionalized MIL-100(Fe) and its enhanced CO 2 capacity and selectivity. Chemical Engineering Journal, 2017, 321, 600-607.	6.6	36
129	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie - International Edition, 2021, 60, 10842-10849.	7.2	36
130	Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal–organic frameworks. Chemical Communications, 2017, 53, 1184-1187.	2.2	35
131	Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal–Organic Frameworks by Spillover. Journal of Physical Chemistry C, 2011, 115, 13829-13836.	1.5	34
132	Highly active and selective Coâ€based Fischer–Tropsch catalysts derived from metal–organic frameworks. AICHE Journal, 2017, 63, 2935-2944.	1.8	34
133	Selfâ€Templated Formation of Pt@ZIFâ€8/SiO ₂ Composite with 3Dâ€Ordered Macropores and Sizeâ€5elective Catalytic Properties. Small Methods, 2018, 2, 1800219.	4.6	34
134	Water–Alcohol-Soluble Hyperbranched Polyelectrolytes and Their Application in Polymer Solar Cells and Photocatalysis. ACS Applied Polymer Materials, 2020, 2, 12-18.	2.0	34
135	Adsorption and Diffusion of Ethyl Acetate on the Chromium-Based Metal–Organic Framework MIL-101. Journal of Chemical & Engineering Data, 2011, 56, 3419-3425.	1.0	32
136	One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Molecular Catalysis, 2017, 433, 77-83.	1.0	31
137	Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure. Applied Surface Science, 2014, 314, 7-14.	3.1	30
138	Ni@Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction. Chinese Journal of Catalysis, 2016, 37, 91-97.	6.9	30
139	Growth Pattern Control and Nanoarchitecture Engineering of Metal–Organic Framework Single Crystals by Confined Space Synthesis. ACS Central Science, 2022, 8, 718-728.	5.3	30
140	Influence of acidic and basic properties of ZrO2 based catalysts on isosynthesis. Fuel, 2002, 81, 1611-1617.	3.4	29
141	Selective hydrogenation of nitriles to imines over a multifunctional heterogeneous Pt catalyst. AICHE Journal, 2014, 60, 3565-3576.	1.8	29
142	CoFe -CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2018, 262, 18-26.	2.6	28
143	Hierarchically porous Fe,N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. Nanoscale, 2021, 13, 10500-10508.	2.8	28
144	Hierarchical Double-Shelled CoP Nanocages for Efficient Visible-Light-Driven CO ₂ Reduction. ACS Applied Materials & Interfaces, 2021, 13, 45609-45618.	4.0	28

#	Article	IF	CITATIONS
145	Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Applied Catalysis B: Environmental, 2022, 307, 121163.	10.8	28
146	Activation of molecular oxygen by a metal–organic framework with open 2,2′-bipyridine for selective oxidation of saturated hydrocarbons. Chemical Communications, 2012, 48, 12109.	2.2	27
147	Encapsulation of C–N-decorated metal sub-nanoclusters/single atoms into a metal–organic framework for highly efficient catalysis. Chemical Science, 2018, 9, 8962-8968.	3.7	27
148	Ni-based catalysts derived from a metal-organic framework for selective oxidation of alkanes. Chinese Journal of Catalysis, 2016, 37, 955-962.	6.9	26
149	Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: toward efficient and cost-effective catalysts for the MTA reaction. Catalysis Science and Technology, 2017, 7, 5143-5153.	2.1	26
150	Scalable synthesis of multi-shelled hollow N-doped carbon nanosheet arrays with confined Co/CoP heterostructures from MOFs for pH-universal hydrogen evolution reaction. Science China Chemistry, 2022, 65, 619-629.	4.2	26
151	The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. Chemical Record, 2016, 16, 1456-1476.	2.9	24
152	Improved Ethanol Adsorption Capacity and Coefficient of Performance for Adsorption Chillers of Cu-BTC@GO Composite Prepared by Rapid Room Temperature Synthesis. Industrial & Engineering Chemistry Research, 2016, 55, 11767-11774.	1.8	24
153	Cobalt and Nitrogen Co-Doped Graphene-Carbon Nanotube Aerogel as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts, 2018, 8, 275.	1.6	24
154	Properties of Sm2O3–ZrO2 composite oxides and their catalytic performance in isosynthesis. Applied Catalysis A: General, 2007, 319, 119-127.	2.2	23
155	Regulating the Electronic Structure and Water Adsorption Capability by Constructing Carbonâ€Doped CuO Hollow Spheres for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2020, 13, 5711-5721.	3.6	23
156	Selective Formation of Isobutene from CO Hydrogenation over Zirconium Dioxide Based Catalysts. Energy & Fuels, 2001, 15, 1434-1440.	2.5	22
157	Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ Alcoholysis. Organic Letters, 2020, 22, 2093-2098.	2.4	22
158	Facile Synthesis of Boron and Nitrogen Dual-Doped Hollow Mesoporous Carbons for Efficient Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces, 2021, 13, 42598-42604.	4.0	22
159	Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Scientific Reports, 2015, 5, 11604.	1.6	21
160	Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co–CoS _{<i>x</i>} heterojunction by intensified spin polarization. Chemical Science, 2022, 13, 4647-4653.	3.7	21
161	Subnanometric Cu clusters on atomically Fe-doped MoO2 for furfural upgrading to aviation biofuels. Nature Communications, 2022, 13, 2591.	5.8	21
162	Hollow o ₃ O ₄ @Co ₃ O ₄ @SiO ₂ Multi‥olkâ€Đoubleâ€Shell Nanoreactors for Highly Efficient CO Oxidation. ChemCatChem, 2019, 11, 772-779.	1.8	19

#	Article	IF	CITATIONS
163	Structure-induced hollow Co3O4 nanoparticles with rich oxygen vacancies for efficient CO oxidation. Science China Materials, 2020, 63, 267-275.	3.5	18
164	Simple 2 D/0 D CoP Integration in a Metal–Organic Frameworkâ€Derived Bifunctional Electrocatalyst f Efficient Overall Water Splitting. ChemSusChem, 2020, 13, 3495-3503.	or 3.6	18
165	Encapsulation of ultrafine Pd nanoparticles within the shallow layers of UiO-67 for highly efficient hydrogenation reactions. Science China Chemistry, 2021, 64, 109-115.	4.2	18
166	Response to "hydrogen adsorption in Pt catalyst/MOF-5 materials―by Luzan and Talyzin. Microporous and Mesoporous Materials, 2010, 135, 206-208.	2.2	17
167	Porous Anatase-TiO ₂ (B) Dual-Phase Nanorods Prepared from <i>in Situ</i> Pyrolysis of a Single Molecule Precursor Offer High Performance Lithium-Ion Storage. Inorganic Chemistry, 2018, 57, 12245-12254.	1.9	17
168	An ultra high performance multi-element doped mesoporous carbon catalyst derived from poly(4-vinylpyridine). Journal of Materials Chemistry A, 2015, 3, 23512-23519.	5.2	16
169	3D Ln–Ag (Ln=Nd; Eu) coordination polymers based on isonicotinate and oxalate ligands: Synthesis, crystal structures and luminescence. Inorganic Chemistry Communication, 2009, 12, 883-886.	1.8	15
170	Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized metal catalysts. Catalysis Today, 2021, 368, 217-223.	2.2	15
171	N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation. Science China Chemistry, 2022, 65, 1411-1419.	4.2	15
172	MOF-Assisted Synthesis of Highly Mesoporous Cr ₂ O ₃ /SiO ₂ Nanohybrids for Efficient Lewis-Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2020, 12, 48691-48699.	4.0	14
173	Ultrathin Nickelâ€doped ZnIn ₂ S ₄ Nanosheets with Sulfur Vacancies for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2021, 13, 5148-5155.	1.8	13
174	Metal Oxide-Stabilized Hetero-Single-Atoms for Oxidative Cleavage of Biomass-Derived Isoeugenol to Vanillin. ACS Catalysis, 2022, 12, 8503-8510.	5.5	13
175	Ionic liquid [Bmim][AuCl4] encapsulated in ZIF-8 as precursors to synthesize N-decorated Au catalysts for selective aerobic oxidation of alcohols. Catalysis Today, 2020, 351, 94-102.	2.2	12
176	A pyridinium-pended conjugated polyelectrolyte for efficient photocatalytic hydrogen evolution and organic solar cells. Polymer Chemistry, 2021, 12, 1498-1506.	1.9	12
177	An unprecedented two-dimensional Eu(III) coordination polymer Eu(OOC–C5H4N–CH2–CH2–COO)(OOC–COO)·2H2O formed by in situ reaction of fumaric acid and isonicotinic acid: Crystal structure and luminescent properties. Solid State Sciences, 2009, 11, 1065-1070.	1.5	11
178	Nitrogenâ€Doped Carbon Composites with Ordered Macropores and Hollow Walls. Angewandte Chemie, 2021, 133, 23922-23927.	1.6	11
179	CoP nanorods anchored on Ni ₂ P-NiCoP nanosheets with abundant heterogeneous interfaces boosting the electrocatalytic oxidation of 5-hydroxymethyl-furfural. Catalysis Science and Technology, 2022, 12, 4288-4297.	2.1	11
180	1-D Ln–Ag (Ln = Eu; Tb) heterometallic coordination polymers with pyridine-2,6-dicarboxylate as the single ligand: Synthesis, crystal structures, and luminescence. Journal of Coordination Chemistry, 2010, 63, 448-456.	0.8	10

#	Article	IF	CITATIONS
181	Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production. Chinese Journal of Catalysis, 2022, 43, 782-792.	6.9	10
182	A high-valent di-μ-oxo dimanganese complex covalently anchored in a metal–organic framework as a highly efficient and recoverable water oxidation catalyst. Chemical Communications, 2018, 54, 4188-4191.	2.2	9
183	Boosting the Fischer-Tropsch synthesis performances of cobalt-based catalysts via geometric and electronic engineering: Construction of hollow structures. Applied Catalysis B: Environmental, 2022, 313, 121469.	10.8	9
184	Reply to "Comment on â€~Kinetics and Mechanistic Model for Hydrogen Spillover on Bridged Metal-Organic Frameworks'― Journal of Physical Chemistry C, 2008, 112, 3155-3156.	1.5	8
185	Self-supported hollow-Co3O4@CNT: A versatile anode and cathode host material for high-performance lithium-ion and lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 920, 166022.	2.8	8
186	Effects of CO2 on synthesis of isobutene and isobutane from CO2/CO/H2 reactant mixtures over zirconia-based catalysts. Applied Catalysis B: Environmental, 2008, 80, 72-80.	10.8	7
187	An Unprecedented Case: A Low Specific Surface Area Anatase/N-Doped Carbon Nanocomposite Derived from a New Single Source Precursor Affords Fast and Stable Lithium Storage. ACS Applied Materials & amp; Interfaces, 2017, 9, 28527-28536.	4.0	6
188	Influence of reactor materials on i-C4 synthesis from CO hydrogenation over ZrO2 based catalysts. Fuel Processing Technology, 2003, 83, 39-48.	3.7	5
189	Phase segregation <i>via</i> etching-induced cation migration in CoS _{<i>x</i>} –ZnS nanoarchitectures for solar hydrogen evolution. Catalysis Science and Technology, 2022, 12, 1408-1417.	2.1	4
190	Hierarchical Poresâ€Confined Ultrasmall Cu Nanoparticles for Efficient Oxidation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	4
191	In situ doping brushite on zinc manganese oxide toward enhanced water oxidation performance: Mimicry of an oxygen-evolving complex. Chinese Journal of Catalysis, 2018, 39, 1017-1026.	6.9	3
192	Erratum to "Influence of reactor materials on i-C4 synthesis from CO hydrogenation over ZrO2 based catalysts―[Fuel Process. Technol. 83 (1–3) (2003) 39–48]. Fuel Processing Technology, 2004, 85, 401-411.	3.7	2
193	Metal–Organic Frameworks: Encapsulation of Mono―or Bimetal Nanoparticles Inside Metal–Organic Frameworks via In situ Incorporation of Metal Precursors (Small 22/2015). Small, 2015, 11, 2586-2586.	5.2	1
194	Metal Subâ€nanoclusters Confined within Hierarchical Porous Carbons with High Oxidation Activity. Angewandte Chemie, 2021, 133, 10937-10944.	1.6	0