Shane Bergin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7912148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331, 568-571.	6.0	6,190
2	Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano, 2012, 6, 3468-3480.	7.3	625
3	Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir, 2010, 26, 3208-3213.	1.6	566
4	Multicomponent Solubility Parameters for Single-Walled Carbon Nanotubeâ^'Solvent Mixtures. ACS Nano, 2009, 3, 2340-2350.	7.3	347
5	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential. Journal of Physical Chemistry C, 2008, 112, 10692-10699.	1.5	343
6	Towards Solutions of Singleâ€Walled Carbon Nanotubes in Common Solvents. Advanced Materials, 2008, 20, 1876-1881.	11.1	333
7	Debundling of Single-Walled Nanotubes by Dilution:Â Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions. Journal of Physical Chemistry B, 2006, 110, 15708-15718.	1.2	330
8	New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants. Journal of Physical Chemistry C, 2010, 114, 231-237.	1.5	108
9	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. Journal of Physical Chemistry C, 2008, 112, 972-977.	1.5	75
10	High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration. Journal of Physical Chemistry C, 2008, 112, 3519-3524.	1,5	56
11	Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology, 2007, 18, 455705.	1.3	45
12	Fabrication of stable dispersions containing up to 70% individual carbon nanotubes in a common organic solvent. Physica Status Solidi (B): Basic Research, 2006, 243, 3058-3062.	0.7	41
13	Imaging methods for determining uptake and toxicity of carbon nanotubes <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2011, 6, 849-865.	1.7	37
14	Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents. Biomacromolecules, 2016, 17, 1845-1853.	2.6	29
15	Differentiating Defect and Basal Plane Contributions to the Surface Energy of Graphite Using Inverse Gas Chromatography. Chemistry of Materials, 2016, 28, 6355-6366.	3.2	27
16	Using solution thermodynamics to describe the dispersion of rod-like solutes: application to dispersions of carbon nanotubes in organic solvents. Nanotechnology, 2012, 23, 265604.	1.3	17
17	The dependence of the measured surface energy of graphene on nanosheet size. 2D Materials, 2017, 4, 015040.	2.0	17
18	Effects of Ambient Conditions on Solventâ^'Nanotube Dispersions: Exposure to Water and Temperature Variation. Journal of Physical Chemistry C, 2009, 113, 1260-1266.	1.5	16

SHANE BERGIN

#	Article	IF	CITATIONS
19	Mapping functional groups on oxidised multi-walled carbon nanotubes at the nanometre scale. Chemical Communications, 2014, 50, 6744-6747.	2.2	12
20	Informal physics programs as communities of practice: How can programs support university students' identities?. Physical Review Physics Education Research, 2021, 17, .	1.4	9
21	Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives. European Journal of Physics, 2018, 39, 025703.	0.3	7
22	Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. Nanotechnology, 2008, 19, 485702.	1.3	6
23	Effect of Solvents and Dispersants on the Bundle Dissociation of Single-walled Carbon Nanotube. AIP Conference Proceedings, 2005, , .	0.3	4
24	Selenium-Enhanced Electron Microscopic Imaging of Different Aggregate Forms of a Segment of the Amyloid β Peptide in Cells. ACS Nano, 2012, 6, 4740-4747.	7.3	4
25	The representation of women in Irish Leaving Certificate Physics textbooks. Physics Education, 2022, 57, 025017.	0.3	4
26	Effect of solvent and dispersant on the bundle dissociation of single-walled carbon nanotube. , 2005, , .		3
27	Characterisation of Single-walled Carbon Nanotube Bundle Dissociation in Amide Solvents. AIP Conference Proceedings, 2005, , .	0.3	1
28	The drop heard round the world. Physics World, 2014, 27, 26-29.	0.0	0
29	Electron Microscopic Characterization of Functionalized Multi-Walled Carbon Nanotubes and Their Interactions with the Blood Brain Barrier. Microscopy and Microanalysis, 2014, 20, 1744-1745.	0.2	0
30	EFFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, , 211-212.	0.1	0