
## **Adam P Sharples**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911966/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Scientific Reports, 2018, 8,<br>1898.                                                                                                                    | 1.6 | 204       |
| 2  | Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell, 2015, 14, 511-523.                                                                          | 3.0 | 166       |
| 3  | Does skeletal muscle have an â€~epi'â€memory? The role of epigenetics in nutritional programming,<br>metabolic disease, aging and exercise. Aging Cell, 2016, 15, 603-616.                                                    | 3.0 | 143       |
| 4  | A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and<br>hypertrophy. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E1019-E1031.                             | 1.8 | 113       |
| 5  | Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiological Reports, 2016, 4, e12803.                                                                          | 0.7 | 79        |
| 6  | Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory. Scientific Reports, 2019, 9, 4251.                                                                    | 1.6 | 79        |
| 7  | An epigenetic clock for human skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11,<br>887-898.                                                                                                              | 2.9 | 70        |
| 8  | Factors affecting the structure and maturation of human tissue engineered skeletal muscle.<br>Biomaterials, 2013, 34, 5759-5765.                                                                                              | 5.7 | 69        |
| 9  | DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Scientific Reports, 2020, 10, 15360.                                            | 1.6 | 63        |
| 10 | Modelling <i>in vivo</i> skeletal muscle ageing <i>in vitro</i> using threeâ€dimensional bioengineered constructs. Aging Cell, 2012, 11, 986-995.                                                                             | 3.0 | 62        |
| 11 | Methylome of human skeletal muscle after acute & chronic resistance exercise training,<br>detraining & retraining. Scientific Data, 2018, 5, 180213.                                                                          | 2.4 | 61        |
| 12 | C <sub>2</sub> and C <sub>2</sub> C <sub>12</sub> murine skeletal myoblast models of atrophic and<br>hypertrophic potential: Relevance to disease and ageing?. Journal of Cellular Physiology, 2010, 225,<br>240-250.         | 2.0 | 59        |
| 13 | Skeletal muscle cells possess a â€~memory' of acute early life TNF-α exposure: role of epigenetic<br>adaptation. Biogerontology, 2016, 17, 603-617.                                                                           | 2.0 | 55        |
| 14 | UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy.<br>Journal of Physiology, 2019, 597, 3727-3749.                                                                        | 1.3 | 53        |
| 15 | Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. FASEB Journal, 2017, 31, 5268-5282.                                                                                 | 0.2 | 51        |
| 16 | The Interplay Between Exercise Metabolism, Epigenetics, and Skeletal Muscle Remodeling. Exercise and Sport Sciences Reviews, 2020, 48, 188-200.                                                                               | 1.6 | 47        |
| 17 | Reduction of myoblast differentiation following multiple population doublings in mouse C2C12 cells:<br>A model to investigate ageing?. Journal of Cellular Biochemistry, 2011, 112, 3773-3785.                                | 1.2 | 46        |
| 18 | Postâ€exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell<br>signalling and bone turnover: implications for training adaptation. Journal of Physiology, 2019, 597,<br>4779-4796. | 1.3 | 43        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of insulin-like-growth factor binding protein 2 (ICFBP2) and phosphatase and tensin<br>homologue (PTEN) in the regulation of myoblast differentiation and hypertrophy. Growth Hormone<br>and ICF Research, 2013, 23, 53-61.      | 0.5 | 42        |
| 20 | <scp>l</scp> â€glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy<br>After Cytokine (TNFâ€Î±) Stress Via Reduced p38 MAPK Signal Transduction. Journal of Cellular Physiology,<br>2016, 231, 2720-2732. | 2.0 | 41        |
| 21 | Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation. Biogerontology, 2017, 18, 109-129.                                                                        | 2.0 | 41        |
| 22 | Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube<br>atrophy: deciphering the role of androgen and IGF-I receptorsÂ. Biogerontology, 2016, 17, 619-639.                                       | 2.0 | 40        |
| 23 | Sirtuin 1 regulates skeletal myoblast survival and enhances differentiation in the presence of resveratrol. Experimental Physiology, 2012, 97, 400-418.                                                                                   | 0.9 | 39        |
| 24 | Acute mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal muscle.<br>Biotechnology Letters, 2014, 36, 1113-1124.                                                                                          | 1.1 | 37        |
| 25 | Metaâ€analysis of genomeâ€wide DNA methylation and integrative omics of age in human skeletal muscle.<br>Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1064-1078.                                                                 | 2.9 | 37        |
| 26 | Impaired hypertrophy in myoblasts is improved with testosterone administration. Journal of Steroid<br>Biochemistry and Molecular Biology, 2013, 138, 152-161.                                                                             | 1.2 | 33        |
| 27 | Myoblast models of skeletal muscle hypertrophy and atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 230-236.                                                                                                  | 1.3 | 32        |
| 28 | Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment<br>skeletal muscle cell signaling: implications for CHO periodization. Journal of Applied Physiology, 2019,<br>126, 1587-1597.               | 1.2 | 31        |
| 29 | The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction. Molecular and Cellular Biochemistry, 2018, 444, 109-123.                                                              | 1.4 | 29        |
| 30 | Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation. Journal of Applied Physiology, 2017, 123, 451-459.                                 | 1.2 | 28        |
| 31 | Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle. FASEB<br>Journal, 2021, 35, e21864.                                                                                                            | 0.2 | 28        |
| 32 | Postprandial Triacylglycerol in Adolescent Boys. Medicine and Science in Sports and Exercise, 2008, 40, 1049-1056.                                                                                                                        | 0.2 | 27        |
| 33 | Postexercise High-Fat Feeding Suppresses p70S6K1 Activity in Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2016, 48, 2108-2117.                                                                                     | 0.2 | 26        |
| 34 | Mimicking exercise in threeâ€dimensional bioengineered skeletal muscle to investigate cellular and<br>molecular mechanisms of physiological adaptation. Journal of Cellular Physiology, 2018, 233,<br>1985-1998.                          | 2.0 | 26        |
| 35 | Knockdown of the E3 ubiquitin ligase UBR5 and its role in skeletal muscle anabolism. American Journal of Physiology - Cell Physiology, 2021, 320, C45-C56.                                                                                | 2.1 | 20        |
| 36 | The Comparative Methylome and Transcriptome After Change of Direction Compared to Straight Line<br>Running Exercise in Human Skeletal Muscle. Frontiers in Physiology, 2021, 12, 619447.                                                  | 1.3 | 19        |

|                                                                                                                                                                                                                                                | Adam P Sharples                    |     |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|-----------|
| Article                                                                                                                                                                                                                                        |                                    | IF  | CITATIONS |
| Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo. Journal of Cellular Physiology, 2021, 236, 653                                                           |                                    | 2.0 | 11        |
| Epigenetics of Skeletal Muscle Aging. , 2018, , 389-416.                                                                                                                                                                                       |                                    |     | 10        |
| Exercise and DNA methylation in skeletal muscle. , 2019, , 211-229.                                                                                                                                                                            |                                    |     | 10        |
| Murine myoblast migration: influence of replicative ageing and nutrition. Biogerontolo 947-964.                                                                                                                                                | ogy, 2017, 18,                     | 2.0 | 8         |
| Exercising Bioengineered Skeletal Muscle In Vitro: Biopsy to Bioreactor. Methods in M<br>Biology, 2019, 1889, 55-79.                                                                                                                           | lolecular                          | 0.4 | 8         |
| Graded reductions in preâ€exercise glycogen concentration do not augment exercisea<br>AMPK and PGCâ€1α protein content in human muscle. Experimental Physiology, 2020                                                                          |                                    | 0.9 | 8         |
| Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. International Journal of Mole 2022, 23, 7602.                                                                                                                                        | ecular Sciences,                   | 1.8 | 7         |
| Whey Protein Augments Leucinemia and Postexercise p70S6K1 Activity Compared W<br>Collagen Blend When in Recovery From Training With Low Carbohydrate Availability. I<br>Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 651-659. | 'ith a Hydrolyzed<br>International | 1.0 | 6         |
| PGC-1α alternative promoter (Exon 1b) controls augmentation of total PGC-1α gene response to cold water immersion and low glycogen availability. European Journal of A Physiology, 2020, 120, 2487-2493.                                       | expression in<br>Applied           | 1.2 | 6         |
| Skeletal Muscle Possesses an Epigenetic Memory of Exercise: Role of Nucleus Type-Sp<br>Methylation. Function, 2021, 2, zqab047.                                                                                                                | pecific DNA                        | 1.1 | 6         |
| Low preâ€exercise muscle glycogen availability offsets the effect of postâ€exercise co<br>in augmenting PGCâ€1α gene expression. Physiological Reports, 2019, 7, e14082.                                                                       | old water immersion                | 0.7 | 5         |
| Commentaries on Viewpoint: "Muscle memory―not mediated by myonuclear nur<br>analysis of human detraining data. Journal of Applied Physiology, 2019, 127, 1817-182                                                                              | mber? Secondary<br>20.             | 1.2 | 3         |
| Cellular and Molecular Exercise Physiology: A Historical Perspective for the Discovery of Mechanisms Contributing to Skeletal Muscle Adaptation. Cellular and Molecular Exerc 2017, 5, .                                                       | of<br>cise Physiology,             | 0.7 | 2         |

| 50 | Vitamin D and Skeletal Muscle Regeneration: A Systems Approach. Japanese Journal of Physical Fitness and Sports Medicine, 2016, 65, 157-157. | 0.0 | 0 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 51 | The role of UBR5 on Mitogenâ€activated protein kinase (MAPK) signalling and muscle mass regulation in mice. FASEB Journal, 2020, 34, 1-1.    | 0.2 | 0 |

#