Locke Davenport Huyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage Immunomodulation Through New Polymers that Recapitulate Functional Effects of Itaconate as a Power House of Innate Immunity. Advanced Functional Materials, 2021, 31, 2003341.	7.8	12
2	Heartâ€onâ€a hip Platform for Assessing Toxicity of Air Pollution Related Nanoparticles. Advanced Materials Technologies, 2021, 6, 2000726.	3.0	22
3	Discovery: Virtual Implementation of Inquiry-Based Remote Learning for Secondary STEM Students During the COVID-19 Pandemic. Biomedical Engineering Education, 2021, 1, 87-94.	0.6	9
4	An Organ-on-a-Chip System to Study Anaerobic Bacteria in Intestinal Health and Disease. Med, 2021, 2, 16-18.	2.2	0
5	Toward Renewable and Functional Biomedical Polymers with Tunable Degradation Rates Based on Itaconic Acid and 1,8-Octanediol. ACS Applied Polymer Materials, 2021, 3, 1943-1955.	2.0	13
6	A well plate–based multiplexed platform for incorporation of organoids into an organ-on-a-chip system with a perfusable vasculature. Nature Protocols, 2021, 16, 2158-2189.	5.5	51
7	Biomaterials direct functional B cell response in a material-specific manner. Science Advances, 2021, 7, eabj5830.	4.7	18
8	Enhancing senior high school student engagement and academic performance using an inclusive and scalable inquiry-based program. Npj Science of Learning, 2020, 5, 17.	1.5	6
9	Elastic Biomaterial Scaffold with Spatially Varying Adhesive Design. Advanced Biology, 2020, 4, e2000046.	3.0	5
10	Recapitulating Pancreatic Tumor Microenvironment through Synergistic Use of Patient Organoids and Organâ€onâ€a hip Vasculature. Advanced Functional Materials, 2020, 30, 2000545.	7.8	62
11	Advanced Strategies for Modulation of the Material–Macrophage Interface. Advanced Functional Materials, 2020, 30, 1909331.	7.8	69
12	3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding. ACS Biomaterials Science and Engineering, 2020, 6, 1333-1343.	2.6	40
13	Oneâ€Pot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs. Advanced Healthcare Materials, 2019, 8, e1900245.	3.9	23
14	Macrophage Polarization with Angiopoietin-1 Peptide QHREDGS. ACS Biomaterials Science and Engineering, 2019, 5, 4542-4550.	2.6	10
15	A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell, 2019, 176, 913-927.e18.	13.5	398
16	Biowire Model of Interstitial and Focal Cardiac Fibrosis. ACS Central Science, 2019, 5, 1146-1158.	5.3	78
17	Method for the Fabrication of Elastomeric Polyester Scaffolds for Tissue Engineering and Minimally Invasive Delivery. ACS Biomaterials Science and Engineering, 2018, 4, 3691-3703.	2.6	22
18	Degradation of poly(5-hydroxy-trimethylene carbonate) in aqueous environments. Polymer Degradation and Stability, 2018, 158, 83-91.	2.7	13

LOCKE DAVENPORT HUYER

#	Article	IF	CITATIONS
19	Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nature Protocols, 2018, 13, 1793-1813.	5.5	58
20	Review: Multimodal bioactive material approaches for wound healing. APL Bioengineering, 2018, 2, 021503.	3.3	46
21	Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomaterialia, 2017, 52, 81-91.	4.1	135
22	InVADE: Integrated Vasculature for Assessing Dynamic Events. Advanced Functional Materials, 2017, 27, 1703524.	7.8	62
23	Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature Materials, 2017, 16, 1038-1046.	13.3	295
24	Organsâ€onâ€aâ€Chip: InVADE: Integrated Vasculature for Assessing Dynamic Events (Adv. Funct. Mater.) Tj ETC	Qq <u>9</u> 8 0 rg	BT ₁ /Overlock
25	Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2016, 2, 780-788.	2.6	79

26	The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective. Biochemical and Biophysical Research Communications, 2016, 473, 698-703.	1.0	48
27	Biomaterial based cardiac tissue engineering and its applications. Biomedical Materials (Bristol), 2015, 10, 034004.	1.7	79