Taku Kouro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911771/publications.pdf

Version: 2024-02-01

414303 279701 2,860 36 23 32 h-index citations g-index papers 36 36 36 4531 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Exhaustion of CAR T cells: potential causes and solutions. Journal of Translational Medicine, 2022, 20,	1.8	32
2	Prospects for a personalized peptide vaccine against lung cancer. Expert Review of Vaccines, 2019, 18, 703-709.	2.0	9
3	Identification of Novel HLA Class II-Restricted Neoantigens Derived from Driver Mutations. Cancers, 2019, 11, 266.	1.7	23
4	Fetal Lymphoid Progenitors Become Restricted to B-1 Fates Coincident with IL-7 \hat{R} 1 Expression. PLoS ONE, 2016, 11, e0165676.	1.1	0
5	The Satb1 Protein Directs Hematopoietic Stem Cell Differentiation toward Lymphoid Lineages. Immunity, 2013, 38, 1105-1115.	6.6	100
6	Identification of Innate IL-5–Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity. Journal of Immunology, 2012, 188, 703-713.	0.4	258
7	IL-5- and eosinophil-mediated inflammation: from discovery to therapy. International Immunology, 2009, 21, 1303-1309.	1.8	315
8	Expression of IL-5Rα on B-1 cell progenitors in mouse fetal liver and involvement of Bruton's tyrosine kinase in their development. Immunology Letters, 2009, 123, 169-178.	1.1	8
9	Chapter 6 Interleukin 5 in the Link Between the Innate and Acquired Immune Response. Advances in Immunology, 2009, 101, 191-236.	1.1	99
10	Participation of intercellular adhesion molecule-2 (CD102) in B lymphopoiesis. Immunology Letters, 2008, 120, 79-86.	1.1	1
11	Soluble Frizzled-Related Protein 1 Is Estrogen Inducible in Bone Marrow Stromal Cells and Suppresses the Earliest Events in Lymphopoiesis. Journal of Immunology, 2008, 181, 6061-6072.	0.4	38
12	A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. Journal of Experimental Medicine, 2007, 204, 2963-2976.	4.2	162
13	Toll-like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity, 2006, 24, 801-812.	6.6	723
14	Primitive Lymphoid Progenitors in Bone Marrow with T Lineage Reconstituting Potential. Journal of Immunology, 2006, 177, 2880-2887.	0.4	60
15	Interleukin 5 Plays an Essential Role in Elicitation of Contact Sensitivity through Dual Effects on Eosinophils and B-1 Cells. International Archives of Allergy and Immunology, 2006, 140, 8-16.	0.9	19
16	A Protein Associated with Toll-Like Receptor 4 (PRAT4A) Regulates Cell Surface Expression of TLR4. Journal of Immunology, 2006, 177, 1772-1779.	0.4	101
17	Isolation of Prolymphocytes from Bone Marrow and Fetal Liver. , 2005, Chapter 22, Unit 22F.1.		1
18	Measurement of Natural Killer Cell Progenitor Activity in Culture. , 2005, Chapter 22, Unit 22F.3.		2

#	Article	IF	CITATIONS
19	Role of IL-5 in the innate immune system and disease control. International Congress Series, 2005, 1285, 145-154.	0.2	3
20	In Vitro Differentiation and Measurement of B Cell Progenitor Activity in Culture., 2005, Chapter 22, Unit 22F.2.		9
21	Src Homology 2–containing 5-Inositol Phosphatase (SHIP) Suppresses an Early Stage of Lymphoid Cell Development through Elevated Interleukin-6 Production by Myeloid Cells in Bone Marrow. Journal of Experimental Medicine, 2004, 199, 243-254.	4.2	42
22	PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nature Immunology, 2003, 4, 280-286.	7.0	128
23	Unique Properties of Fetal Lymphoid Progenitors Identified According to RAG1 Gene Expression. Immunity, 2003, 19, 365-375.	6.6	72
24	Adiponectin, a Fat Cell Product, Influences the Earliest Lymphocyte Precursors in Bone Marrow Cultures by Activation of the Cyclooxygenase-Prostaglandin Pathway in Stromal Cells. Journal of Immunology, 2003, 171, 5091-5099.	0.4	127
25	Relationships between early B- and NK-lineage lymphocyte precursors in bone marrow. Blood, 2002, 100, 3672-3680.	0.6	45
26	Lymphoid lineage cells in adult murine bone marrow diverge from those of other blood cells at an early, hormone-sensitive stage. Seminars in Immunology, 2002, 14, 385-394.	2.7	24
27	Nature or nurture? Steady-state lymphocyte formation in adults does not recapitulate ontogeny. Immunological Reviews, 2002, 187, 116-125.	2.8	65
28	A developing picture of lymphopoiesis in bone marrow. Immunological Reviews, 2002, 189, 28-40.	2.8	63
29	Characteristics of early murine B-lymphocyte precursors and their direct sensitivity to negative regulators. Blood, 2001, 97, 2708-2715.	0.6	92
30	Bruton's tyrosine kinase is required for signaling the CD79b-mediated pro-B to pre-B cell transition. International Immunology, 2001, 13, 485-493.	1.8	27
31	JAK2 and JAK1 Constitutively Associate With an Interleukin-5 (IL-5) Receptor \hat{l}_{\pm} and \hat{l}_{\pm} Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood, 1998, 91, 2264-2271.	0.6	96
32	JAK2 and JAK1 Constitutively Associate With an Interleukin-5 (IL-5) Receptor \hat{l}_{\pm} and \hat{l}_{\pm} Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood, 1998, 91, 2264-2271.	0.6	4
33	The Activation of the JAK2/STAT5 Pathway Is Commonly Involved in Signaling through the Human IL-5 Receptor. International Archives of Allergy and Immunology, 1997, 114, 24-27.	0.9	29
34	Demonstration of a cross-talk between IL-2 and IL-5 in Phosphorylation of IL-2 and IL-5 receptor \hat{l}^2 chains. International Immunology, 1996, 8, 951-960.	1.8	5
35	Critical proline residues of the cytoplasmic domain of the IL-5 receptor α chain and its function in IL-5-mediated activation of JAK kinase and STAT5. International Immunology, 1996, 8, 237-245.	1.8	70
36	Interleukin-5 Receptor and CD5-Positive B Cells. Methods, 1995, 8, 45-59.	1.9	8