Susanna Genedani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homocysteine and A2A-D2 Receptor-Receptor Interaction at Striatal Astrocyte Processes. Journal of Molecular Neuroscience, 2018, 65, 456-466.	1.1	27
2	A2Aâ€Ð2 receptor–receptor interaction modulates gliotransmitter release from striatal astrocyte processes. Journal of Neurochemistry, 2017, 140, 268-279.	2.1	60
3	Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles. Physiology and Behavior, 2015, 142, 79-84.	1.0	9
4	On the role of the extracellular space on the holistic behavior of the brain. Reviews in the Neurosciences, 2015, 26, 489-506.	1.4	34
5	In Vitro Effects of Cocaine on Tunneling Nanotube Formation and Extracellular Vesicle Release in Glioblastoma Cell Cultures. Journal of Molecular Neuroscience, 2015, 55, 42-50.	1.1	32
6	Information handling by the brain: proposal of a new "paradigm―involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. Journal of Neural Transmission, 2014, 121, 1431-1449.	1.4	22
7	Neural Damage Biomarkers during Open Carotid Surgery versus Endovascular Approach. Annals of Vascular Surgery, 2014, 28, 1671-1679.	0.4	1
8	Volume Transmission and the Russian-Doll Organization of Brain Cell Networks. , 2014, , 103-119.		5
9	"Neuro-Semeiotics―and "Free-Energy Minimization―Suggest a Unified Perspective for Integrative Brain Actions: Focus on Receptor Heteromers and Roamer Type of Volume Transmission. Current Protein and Peptide Science, 2014, 15, 703-718.	0.7	6
10	Neuropeptide S stimulates human monocyte chemotaxis via NPS receptor activation. Peptides, 2013, 39, 16-20.	1.2	19
11	A New Interpretative Paradigm for Conformational Protein Diseases. Current Protein and Peptide Science, 2013, 14, 141-160.	0.7	5
12	Neuronal correlates to consciousness. The "Hall of Mirrors―metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules. Brain Research, 2012, 1476, 3-21.	1.1	23
13	Aspects on the integrative actions of the brain from neural networks to "brain-body medicine― Journal of Receptor and Signal Transduction Research, 2012, 32, 163-180.	1.3	8
14	Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Experimental Cell Research, 2012, 318, 603-613.	1.2	70
15	Bioinformatics and mathematical modelling in the study of receptor–receptor interactions and receptor oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1267-1283.	1.4	17
16	Putrescine reverses aconitine-induced arrhythmia in rats. Journal of Pharmacy and Pharmacology, 2011, 41, 651-653.	1.2	20
17	Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. Journal of Receptor and Signal Transduction Research, 2011, 31, 315-331.	1.3	20
18	Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. Journal of Neural Transmission, 2010, 117, 1-4.	1.4	530

#	Article	IF	CITATIONS
19	Differential Sensitivity of A2A and Especially D2 Receptor Trafficking to Cocaine Compared with Lipid Rafts in Cotransfected CHO Cell Lines. Novel Actions of Cocaine Independent of the DA Transporter. Journal of Molecular Neuroscience, 2010, 41, 347-357.	1.1	23
20	Understanding wiring and volume transmission. Brain Research Reviews, 2010, 64, 137-159.	9.1	242
21	A New Hypothesis of Pathogenesis Based on the Divorce between Mitochondria and their Host Cells: Possible Relevance for Alzheimers Disease. Current Alzheimer Research, 2010, 7, 307-322.	0.7	32
22	β-Amyloid Fibrillation and/or Hyperhomocysteinemia Modify Striatal Patterns of Hyaluronic Acid and Dermatan Sulfate: Possible Role in the Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2010, 7, 150-157.	0.7	18
23	Receptor–receptor interactions: A novel concept in brain integration. Progress in Neurobiology, 2010, 90, 157-175.	2.8	57
24	An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A _{2A} , dopamine D ₂ , cannabinoid CB ₁ , and metabotropic glutamate mGlu ₅ receptors. Journal of Receptor and Signal Transduction Research, 2010, 30, 355-369.	1.3	30
25	Common key-signals in learning and neurodegeneration: focus on excito-amino acids, β-amyloid peptides and α-synuclein. Journal of Neural Transmission, 2009, 116, 953-974.	1.4	8
26	Theoretical Considerations on the Topological Organization of Receptor Mosaics. Current Protein and Peptide Science, 2009, 10, 559-569.	0.7	17
27	Structural plasticity in G-protein coupled receptors as demonstrated by the allosteric actions of homocysteine and computer-assisted analysis of disordered domains. Brain Research Reviews, 2008, 58, 459-474.	9.1	42
28	Understanding neuronal molecular networks builds on neuronal cellular network architecture. Brain Research Reviews, 2008, 58, 379-399.	9.1	36
29	Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Research Reviews, 2008, 58, 415-452.	9.1	192
30	Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain. Neurobiology of Aging, 2008, 29, 926-936.	1.5	15
31	Influence of f-MLP, ACTH(1–24) and CRH on in vitro Chemotaxis of Monocytes from Centenarians. NeuroImmunoModulation, 2008, 15, 285-289.	0.9	18
32	Integrative Action of Receptor Mosaics: Relevance of Receptor Topology and Allosteric Modulators. Journal of Receptor and Signal Transduction Research, 2008, 28, 543-565.	1.3	7
33	The Nigro-Striatal DA Neurons and Mechanisms of Their Degeneration in Parkinson's Disease. , 2008, , 121-144.		1
34	Hyper-Homocysteinemia Alters Amyloid Peptide-Clusterin Interactions and Neuroglial Network Morphology and Function in the Caudate After Intrastriatal Injection of Amyloid Peptides. Current Alzheimer Research, 2007, 4, 305-313.	0.7	7
35	Role of Cooperativity in Protein Folding and Protein Mosaic Assemblage Relevance for Protein Conformational Diseases. Current Protein and Peptide Science, 2007, 8, 460-470.	0.7	17
36	Aripiprazole: Effectiveness and safety under naturalistic conditions Experimental and Clinical Psychopharmacology, 2007, 15, 569-575.	1.3	14

Susanna Genedani

#	Article	IF	CITATIONS
37	Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology and Behavior, 2007, 92, 210-217.	1.0	239
38	Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease. Scientific World Journal, The, 2007, 7, 1073-1081.	0.8	1
39	Adenosine A _{2A} receptors, dopamine D ₂ receptors and their interactions in Parkinson's disease. Movement Disorders, 2007, 22, 1990-2017.	2.2	145
40	From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. Brain Research Reviews, 2007, 55, 17-54.	9.1	205
41	One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions. Brain Research Reviews, 2007, 55, 167-189.	9.1	30
42	Aβ peptides as one of the crucial volume transmission signals in the trophic units and their interactions with homocysteine. Physiological implications and relevance for Alzheimer's disease. Journal of Neural Transmission, 2007, 114, 21-31.	1.4	36
43	Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. Journal of Neural Transmission, 2007, 114, 49-75.	1.4	113
44	Allosteric Modulation of Dopamine D2Receptors by Homocysteine. Journal of Proteome Research, 2006, 5, 3077-3083.	1.8	53
45	Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiologica, 2006, 187, 329-344.	1.8	104
46	On the Existence of a Global Molecular Network Enmeshing the Whole Central Nervous System: Physiological and Pathological Implications. Current Protein and Peptide Science, 2006, 7, 3-15.	0.7	29
47	The Concept of Protein Mosaics: Physiological Role and Relevance for Prion Disease. Current Proteomics, 2006, 3, 171-179.	0.1	5
48	How Proteins Come Together in the Plasma Membrane and Function in Macromolecular Assemblies: Focus on Receptor Mosaics. Journal of Molecular Neuroscience, 2005, 26, 133-154.	1.1	28
49	Computer-Assisted Image Analysis of Caveolin-1 Involvement in the Internalization Process of Adenosine A _{2A} –Dopamine D ₂ Receptor Heterodimers. Journal of Molecular Neuroscience, 2005, 26, 177-184.	1.1	35
50	Existence and Theoretical Aspects of Homomeric and Heteromeric Dopamine Receptor Complexes and Their Relevance for Neurological Diseases. NeuroMolecular Medicine, 2005, 7, 061-078.	1.8	21
51	Studies on homocysteine plasma levels in Alzheimer?s patients. Relevance for neurodegeneration. Journal of Neural Transmission, 2005, 112, 163-169.	1.4	44
52	Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: introduction of the tide hypothesis. Journal of Neural Transmission, 2005, 112, 45-63.	1.4	37
53	New Methods to Evaluate Colocalization of Fluorophores in Immunocytochemical Preparations as Exemplified by a Study on A2A and D2 Receptors in Chinese Hamster Ovary Cells. Journal of Histochemistry and Cytochemistry, 2005, 53, 941-953.	1.3	43
54	OnÂtheÂNestedÂHierarchicalÂOrganizationÂofÂCNS: Basic Characteristics of Neuronal Molecular Networks. Lecture Notes in Computer Science, 2004, , 24-54.	1.0	21

SUSANNA GENEDANI

#	Article	IF	CITATIONS
55	Effect of late treatment with γ-hydroxybutyrate on the histological and behavioral consequences of transient brain ischemia in the rat. European Journal of Pharmacology, 2004, 485, 183-191.	1.7	22
56	Studies on homocysteine and dehydroepiandrosterone sulphate plasma levels in alzheimer's disease patients and in Parkinson's disease patients. Neurotoxicity Research, 2004, 6, 327-332.	1.3	39
57	Influence of mirtazapine on the sexual behavior of male rats. Psychopharmacology, 2004, 171, 250-258.	1.5	20
58	Effect of Î ³ -hydroxybutyrate in two rat models of focal cerebral damage. Brain Research, 2003, 986, 181-190.	1.1	52
59	Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biology of the Cell, 2003, 95, 53-57.	0.7	16
60	Atypical antipsychotics in the therapy of bipolar disorders: efficacy and safety. Expert Review of Neurotherapeutics, 2002, 2, 363-376.	1.4	1
61	Pharmacological manipulation of brain galaninergic system and sexual behavior in male mice. Psychopharmacology, 2002, 160, 325-330.	1.5	12
62	Effectiveness of clozapine and olanzapine: a comparison in severe, psychotically ill patients. International Journal of Neuropsychopharmacology, 2001, 4, 135-7.	1.0	2
63	Influence of SAMe on the modifications of brain polyamine levels in an animal model of depression. NeuroReport, 2001, 12, 3939-3942.	0.6	43
64	Neuroprotective effect of γ-hydroxybutyrate in transient global cerebral ischemia in the rat. European Journal of Pharmacology, 2000, 397, 75-84.	1.7	36
65	Immunomodulation by recombinant human interleukin-8 and its signal transduction pathways in invertebrate hemocytes. Cellular and Molecular Life Sciences, 2000, 57, 506-513.	2.4	49
66	Influence of S-adenosyl-L-methionine on chronic mild stress-induced anhedonia in castrated rats. British Journal of Pharmacology, 1999, 127, 645-654.	2.7	66
67	Influence of antineoplastic drugs on morphine analgesia and on morphine tolerance. European Journal of Pharmacology, 1999, 367, 13-17.	1.7	3
68	Blockade of the polyamine site of NMDA receptors produces antinociception and enhances the effect of morphine, in mice. European Journal of Pharmacology, 1996, 298, 51-55.	1.7	50
69	Cytokines and invertebrate immune responses. Biology of the Cell, 1995, 85, 87-91.	0.7	51
70	Cytokines and invertebrate immune responses. , 1995, 85, 87.		29
71	ACTH-(11-24) antagonizes ACTH-(1-24)-induced behavioral syndrome. Neuropeptides, 1994, 26, 241-244.	0.9	1
72	Differential modulation of invertebrate hemocyte motility by CRF, ACTH, and its fragments. Peptides, 1994, 15, 203-206.	1.2	48

SUSANNA GENEDANI

#	Article	IF	CITATIONS
73	Influence of ifenprodil on the ACTH-induced behavioral syndrome in rats. European Journal of Pharmacology, 1994, 252, 77-80.	1.7	9
74	Influence of endorphins on the migration of molluscan hemocytes. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1994, 107, 79-81.	0.5	2
75	The locomotor activity of human monocytes is affected by neuropeptides of the stress response. Pharmacological Research, 1992, 25, 302-303.	3.1	Ο
76	Neuropeptides of the Stress Response and Monocyte Motility. Annals of the New York Academy of Sciences, 1992, 663, 494-496.	1.8	4
77	Influence of CRF and α-MSH on the migration of human monocytes in vitro. Neuropeptides, 1992, 23, 99-102.	0.9	29
78	Antidiuretic and nephrotoxic effects of putrescine in rats. Pharmacological Research, 1991, 23, 95-103.	3.1	7
79	Ischemia- and reperfusion-induced arrhythmias are prevented by putrescine. European Journal of Pharmacology, 1991, 194, 7-10.	1.7	13
80	ACTH(1–24) stimulates the migration of human monocytes in vitro. Peptides, 1990, 11, 1305-1307.	1.2	16
81	Putrescine has anti-arrhythmic effects in rat models of arrhythmia. Pharmacological Research, 1990, 22, 125-126.	3.1	4
82	ODC-polyamine system is involved in morphine analgesia. Life Sciences, 1989, 44, 525-531.	2.0	6
83	Effect of castration and testosterone in experimental models of depression in mice Behavioral Neuroscience, 1989, 103, 1148-1150.	0.6	36
84	Study on the mechanism(s) of action of the shake-inducing effect of putrescine. Pharmacological Research Communications, 1988, 20, 176.	0.2	0
85	Treatment with polyamine synthesis inhibitors reduces the positive inotropic effect of ouabain, noradrenaline and calcium. Pharmacological Research Communications, 1988, 20, 23-35.	0.2	10
86	Acute alkalosis, but not acute hypocalcemia, increases panic behavior in an animal model. Physiology and Behavior, 1987, 41, 357-360.	1.0	6
87	Putrescine has hypothermic and antipyretic activity, in rats. Life Sciences, 1986, 38, 1293-1298.	2.0	4
88	Effects on long-term sensitivity to pain and morphine of stress induced in the newborn rat by pain or manipulation. Physiology and Behavior, 1986, 37, 827-831.	1.0	18
89	Behavioral activity and active avoidance learning and retention in rats neonatally exposed to painful stimuli. Physiology and Behavior, 1986, 36, 553-555.	1.0	14
90	Effect of polyamines on perfused rat heart contractility. Pharmacological Research Communications, 1986, 18, 503-512.	0.2	3

#	Article	IF	CITATIONS
91	Effect of polyamines on perfused rat heart contractility. Pharmacological Research Communications, 1985, 17, 873-881.	0.2	3
92	Putrescine has analgesic activity, in rats. Life Sciences, 1984, 34, 2407-2412.	2.0	18
93	Effect of α-difluoromethylornithine (DFMO) on the behavioral syndrome induced by intracerebroventricular injection of ACTH1–24, in rats. Neuropeptides, 1984, 4, 247-250.	0.9	4
94	Sex-linked differences in avoidance learning in the offspring of rats treated with nicotine during pregnancy. Psychopharmacology, 1983, 80, 93-95.	1.5	47
95	Oxolinic Acid – Trimethoprim Combination: Effects on DNA Synthesis and on Viability of <i>Escherichia coli</i> . Chemotherapy, 1983, 29, 24-27.	0.8	6
96	Trimethoprim enhances the antibacterial activity of nalidixic and oxolinic acids and delays the emergence of resistance. Experientia, 1980, 36, 243-244.	1.2	8
97	Pharmacological interferences in the protein synthesis during the fetal or neonatal period, in the rat: Behavioral outcomes in the adulthood. Pharmacological Research Communications, 1980, 12, 227-232.	0.2	3
98	Superior avoidance learning in the offspring of rats treated with an anabolic steroid during pregnancy. Experientia, 1979, 35, 635-635.	1.2	1
99	Behavioural effects of naloxone in rats. Experientia, 1978, 34, 771-772.	1.2	37