David G Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Often Undiagnosed but Treatable: Case Vignettes and Clinical Considerations for Assessing Anxiety Disorders in Youth with Autism Spectrum Disorder and Intellectual Disability. Evidence-Based Practice in Child and Adolescent Mental Health, 2022, 7, 24-40.	1.0	1
2	Identifying autism symptom severity trajectories across childhood. Autism Research, 2022, 15, 687-701.	3.8	21
3	Charting brain growth and aging at high spatial precision. ELife, 2022, 11, .	6.0	61
4	Association of Amygdala Development With Different Forms of Anxiety in Autism Spectrum Disorder. Biological Psychiatry, 2022, 91, 977-987.	1.3	18
5	Social housing status impacts rhesus monkeys' affective responding in classic threat processing tasks. Scientific Reports, 2022, 12, 4140.	3.3	2
6	Sex-Dependent Structure of Socioemotional Salience, Executive Control, and Default Mode Networks in Preschool-Aged Children with Autism. NeuroImage, 2022, , 119252.	4.2	4
7	Altered Development of Amygdala-Connected Brain Regions in Males and Females with Autism. Journal of Neuroscience, 2022, 42, 6145-6155.	3.6	11
8	Longitudinal Evaluation of Cerebral Growth Across Childhood in Boys and Girls With Autism Spectrum Disorder. Biological Psychiatry, 2021, 90, 286-294.	1.3	33
9	Clinically Significant Anxiety in Children with Autism Spectrum Disorder and Varied Intellectual Functioning. Journal of Clinical Child and Adolescent Psychology, 2021, 50, 780-795.	3.4	75
10	Trajectories of Autism Symptom Severity Change During Early Childhood. Journal of Autism and Developmental Disorders, 2021, 51, 227-242.	2.7	47
11	The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. Journal of Comparative Neurology, 2021, 529, 828-852.	1.6	39
12	A Longitudinal Study of White Matter Development in Relation to Changes in Autism Severity Across Early Childhood. Biological Psychiatry, 2021, 89, 424-432.	1.3	34
13	Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biological Psychiatry, 2021, 89, 896-910.	1.3	21
14	Structural differences in the hippocampus and amygdala of behaviorally inhibited macaque monkeys. Hippocampus, 2021, 31, 858-868.	1.9	8
15	Introduction to commentary by Laurent Mottron and responses. Autism Research, 2021, 14, 2212-2212.	3.8	2
16	Altered Gray-White Matter Boundary Contrast in Toddlers at Risk for Autism Relates to Later Diagnosis of Autism Spectrum Disorder. Frontiers in Neuroscience, 2021, 15, 669194.	2.8	5
17	Life and Death of Immature Neurons in the Juvenile and Adult Primate Amygdala. International Journal of Molecular Sciences, 2021, 22, 6691.	4.1	19
18	Anterior Cingulate Cortex Ablation Disrupts Affective Vigor and Vigilance. Journal of Neuroscience, 2021, 41, 8075-8087.	3.6	19

#	Article	IF	CITATIONS
19	Fear Potentiated Startle in Children With Autism Spectrum Disorder: Association With Anxiety Symptoms and Amygdala Volume. Autism Research, 2021, 14, 450-463.	3.8	12
20	Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. Journal of Neuroscience, 2021, 41, 9971-9987.	3.6	29
21	Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice. JCI Insight, 2021, 6, .	5.0	12
22	Autism BrainNet: A Collaboration Between Medical Examiners, Pathologists, Researchers, and Families to Advance the Understanding and Treatment of Autism Spectrum Disorder. Archives of Pathology and Laboratory Medicine, 2021, 145, 494-501.	2.5	1
23	The Autism Phenome Project: Toward Identifying Clinically Meaningful Subgroups of Autism. Frontiers in Neuroscience, 2021, 15, 786220.	2.8	21
24	Sex Differences in the Amygdala Resting-State Connectome of Children With Autism Spectrum Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 320-329.	1.5	21
25	Understanding Hippocampal Development in Young Children With Autism Spectrum Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2020, 59, 1069-1079.	0.5	39
26	Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior. Cerebral Cortex, 2020, 30, 1573-1585.	2.9	17
27	Developmental–behavioral profiles in children with autism spectrum disorder and coâ€occurring gastrointestinal symptoms. Autism Research, 2020, 13, 1778-1789.	3.8	64
28	Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature, 2020, 586, 80-86.	27.8	155
29	Neuropsychological and neuropathological observations of a long-studied case of memory impairment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29883-29893.	7.1	5
30	A Metabolomics Approach to Screening for Autism Risk in the Children's Autism Metabolome Project. Autism Research, 2020, 13, 1270-1285.	3.8	37
31	Postnatal development of the entorhinal cortex: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2020, 528, 2308-2332.	1.6	6
32	COVIDâ€19 and Autism Research: Perspectives from Around the Globe. Autism Research, 2020, 13, 844-869.	3.8	54
33	High Psychopathology Subgroup in Young Children With Autism: Associations With Biological Sex and Amygdala Volume. Journal of the American Academy of Child and Adolescent Psychiatry, 2020, 59, 1353-1363.e2.	0.5	32
34	Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nature Communications, 2020, 11, 4932.	12.8	105
35	A Longitudinal Study of Local Gyrification Index in Young Boys With Autism Spectrum Disorder. Cerebral Cortex, 2019, 29, 2575-2587.	2.9	47
36	Differential Altered Auditory Eventâ€Related Potential Responses in Young Boys on the Autism Spectrum With and Without Disproportionate Megalencephaly. Autism Research, 2019, 12, 1236-1250.	3.8	11

#	Article	IF	CITATIONS
37	Amygdala growth from youth to adulthood in the macaque monkey. Journal of Comparative Neurology, 2019, 527, 3034-3045.	1.6	9
38	Gaps in Current Autism Research: The Thoughts of the <i>Autism Research</i> Editorial Board and Associate Editors. Autism Research, 2019, 12, 700-714.	3.8	28
39	A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. Journal of Neurodevelopmental Disorders, 2019, 11, 32.	3.1	46
40	Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biological Psychiatry, 2019, 85, 345-354.	1.3	111
41	Reply to: Lack of Diagnostic Utility of "Amino Acid Dysregulation Metabotypes― Biological Psychiatry, 2019, 85, e43-e44.	1.3	Ο
42	SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research. Neuron, 2018, 97, 488-493.	8.1	265
43	Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3710-3715.	7.1	123
44	What will my child's future hold? phenotypes of intellectual development in 2–8â€yearâ€olds with autism spectrum disorder. Autism Research, 2018, 11, 121-132.	3.8	36
45	Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. Lancet Psychiatry,the, 2018, 5, 895-904.	7.4	74
46	Autism BrainNet. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 31-39.	1.8	11
47	Stereological analysis of the rhesus monkey entorhinal cortex. Journal of Comparative Neurology, 2018, 526, 2115-2132.	1.6	10
48	Immune Endophenotypes in Children With Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, 434-441.	1.3	105
49	Editorial: Time to give up on Autism Spectrum Disorder?. Autism Research, 2017, 10, 10-14.	3.8	32
50	In pursuit of neurophenotypes: The consequences of having autism and a big brain. Autism Research, 2017, 10, 711-722.	3.8	70
51	Increased Extra-axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism. Biological Psychiatry, 2017, 82, 186-193.	1.3	173
52	Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526.	21.4	443
53	Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys. Brain Structure and Function, 2017, 222, 3899-3914.	2.3	6
54	Neural correlates of language variability in preschoolâ€aged boys with autism spectrum disorder. Autism Research, 2017, 10, 1107-1119.	3.8	30

#	Article	IF	CITATIONS
55	The effects of neonatal amygdala or hippocampus lesions on adult social behavior. Behavioural Brain Research, 2017, 322, 123-137.	2.2	36
56	Early amygdala or hippocampus damage influences adolescent female social behavior during group formation Behavioral Neuroscience, 2017, 131, 68-82.	1.2	24
57	Persistence of megalencephaly in a subgroup of young boys with autism spectrum disorder. Autism Research, 2016, 9, 1169-1182.	3.8	50
58	Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged Children With Autism Spectrum Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 817-824.	0.5	86
59	Increased Surface Area, but not Cortical Thickness, in a Subset of Young Boys With Autism Spectrum Disorder. Autism Research, 2016, 9, 232-248.	3.8	66
60	Selective lesion of the hippocampus increases the differentiation of immature neurons in the monkey amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14420-14425.	7.1	25
61	The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala. Neuron, 2016, 91, 453-466.	8.1	173
62	A comprehensive transcriptional map of primate brain development. Nature, 2016, 535, 367-375.	27.8	341
63	Methods for acquiring MRI data in children with autism spectrum disorder and intellectual impairment without the use of sedation. Journal of Neurodevelopmental Disorders, 2016, 8, 20.	3.1	81
64	Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4500-4505.	7.1	72
65	Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood. Brain Structure and Function, 2016, 221, 2847-2871.	2.3	70
66	Anxiety is related to indices of cortical maturation in typically developing children and adolescents. Brain Structure and Function, 2016, 221, 3013-3025.	2.3	43
67	Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children. Brain Imaging and Behavior, 2016, 10, 272-282.	2.1	27
68	The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154.	4.2	251
69	Pleiotropic Mechanisms Indicated for Sex Differences in Autism. PLoS Genetics, 2016, 12, e1006425.	3.5	64
70	Chapter 10 Macrocephaly and megalencephaly in autism spectrum disorder. , 2016, , 171-188.		0
71	Assessing hippocampal development and language in early childhood: Evidence from a new application of the Automatic Segmentation Adapter Tool. Human Brain Mapping, 2015, 36, 4483-4496.	3.6	31
72	Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Molecular Autism, 2015, 6, 26.	4.9	62

#	Article	IF	CITATIONS
73	Spatiotemporal dynamics of the postnatal developing primate brain transcriptome. Human Molecular Genetics, 2015, 24, 4327-4339.	2.9	53
74	Disrupted fornix integrity in children with chromosome 22q11.2 deletion syndrome. Psychiatry Research - Neuroimaging, 2015, 232, 106-114.	1.8	14
75	Adult social behavior with familiar partners following neonatal amygdala or hippocampus damage Behavioral Neuroscience, 2015, 129, 339-350.	1.2	25
76	Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 2015, 18, 773-778.	14.8	979
77	A Semi-Automated Pipeline for the Segmentation of Rhesus Macaque Hippocampus: Validation across a Wide Age Range. PLoS ONE, 2014, 9, e89456.	2.5	8
78	Metabolomics as a Tool for Discovery of Biomarkers of Autism Spectrum Disorder in the Blood Plasma of Children. PLoS ONE, 2014, 9, e112445.	2.5	131
79	An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey. Journal of Comparative Neurology, 2014, 522, 1485-1505.	1.6	24
80	Postnatal development of the hippocampus in the Rhesus macaque (<i>Macaca mulatta</i>): A longitudinal magnetic resonance imaging study. Hippocampus, 2014, 24, 794-807.	1.9	26
81	Brief Report: Antibodies Reacting to Brain Tissue in Basque Spanish Children with Autism Spectrum Disorder and Their Mothers. Journal of Autism and Developmental Disorders, 2014, 44, 459-465.	2.7	14
82	Activation of the Maternal Immune System During Pregnancy Alters Behavioral Development of Rhesus Monkey Offspring. Biological Psychiatry, 2014, 75, 332-341.	1.3	249
83	Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 2014, 46, 1063-1071.	21.4	583
84	Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development. Cell, 2014, 158, 263-276.	28.9	637
85	Diffusion properties of major white matter tracts in young, typically developing children. NeuroImage, 2014, 88, 143-154.	4.2	76
86	Comparative analysis of the dendritic organization of principal neurons in the lateral and central nuclei of the rhesus macaque and rat amygdala. Journal of Comparative Neurology, 2014, 522, 689-716.	1.6	10
87	The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING) Neuropsychology, 2014, 28, 1-10.	1.3	163
88	Stereological Study of Amygdala Glial Populations in Adolescents and Adults with Autism Spectrum Disorder. PLoS ONE, 2014, 9, e110356.	2.5	83
89	Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain, Behavior, and Immunity, 2013, 30, 61-65.	4.1	85
90	Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors. Brain, Behavior, and Immunity, 2013, 31, 69-75.	4.1	63

#	Article	IF	CITATIONS
91	The Impact of Early Amygdala Damage on Juvenile Rhesus Macaque Social Behavior. Journal of Cognitive Neuroscience, 2013, 25, 2124-2140.	2.3	44
92	Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 2013, 136, 2825-2835.	7.6	269
93	Human amnesia and the medial temporal lobe illuminated by neuropsychological and neurohistological findings for patient E.P Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1953-62.	7.1	46
94	Macaque Cardiac Physiology Is Sensitive to the Valence of Passively Viewed Sensory Stimuli. PLoS ONE, 2013, 8, e71170.	2.5	33
95	Nonhuman Primate Models for Autism Spectrum Disorders. , 2013, , 379-390.		1
96	Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20089-20094.	7.1	158
97	Increased Rate of Amygdala Growth in Children Aged 2 to 4 Years With Autism Spectrum Disorders. Archives of General Psychiatry, 2012, 69, 53.	12.3	170
98	Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3985-3990.	7.1	50
99	Hippocampal Formation. , 2012, , 896-942.		64
100	Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19620-19625.	7.1	192
101	Maternal and fetal antibrain antibodies in development and disease. Developmental Neurobiology, 2012, 72, 1327-1334.	3.0	54
102	Neuroanatomical Assessment of Biological Maturity. Current Biology, 2012, 22, 1693-1698.	3.9	328
103	Postnatal development of the amygdala: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2012, 520, 1965-1984.	1.6	63
104	Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain, Behavior, and Immunity, 2011, 25, 1123-1135.	4.1	46
105	Social and Nonsocial Content Differentially Modulates Visual Attention and Autonomic Arousal in Rhesus Macaques. PLoS ONE, 2011, 6, e26598.	2.5	43
106	Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders. Neuropsychologia, 2011, 49, 745-759.	1.6	145
107	The promise and the pitfalls of autism research: An introductory note for new autism researchers. Brain Research, 2011, 1380, 3-9.	2.2	60
108	Brief Report: Symptom Onset Patterns and Functional Outcomes in Young Children with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2011, 41, 1727-1732.	2.7	46

#	Article	IF	CITATIONS
109	Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism. Molecular Autism, 2011, 2, 5.	4.9	46
110	Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2011, 519, 1051-1070.	1.6	87
111	Stereological analysis of the rat and monkey amygdala. Journal of Comparative Neurology, 2011, 519, 3218-3239.	1.6	110
112	Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20195-20200.	7.1	210
113	The Neurobiology of Primate Social Behavior. , 2011, , .		1
114	Conserved Subcortical and Divergent Cortical Expression of Proteins Encoded by Orthologs of the Autism Risk Gene MET. Cerebral Cortex, 2011, 21, 1613-1626.	2.9	31
115	Neonatal amygdala lesions result in globally blunted affect in adult rhesus macaques Behavioral Neuroscience, 2011, 125, 848-858.	1.2	55
116	In Search of Cellular Immunophenotypes in the Blood of Children with Autism. PLoS ONE, 2011, 6, e19299.	2.5	107
117	Selective changes in foraging behavior following bilateral neurotoxic amygdala lesions in rhesus monkeys Behavioral Neuroscience, 2010, 124, 761-772.	1.2	9
118	Neonatal amygdala or hippocampus lesions influence responsiveness to objects. Developmental Psychobiology, 2010, 52, 487-503.	1.6	70
119	Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. European Journal of Neuroscience, 2010, 31, 273-285.	2.6	111
120	Postmortem changes in the neuroanatomical characteristics of the primate brain: Hippocampal formation. Journal of Comparative Neurology, 2009, 512, 27-51.	1.6	77
121	Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. Journal of Comparative Neurology, 2009, 515, 349-377.	1.6	58
122	A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Research, 2009, 2, 246-257.	3.8	110
123	Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain, Behavior, and Immunity, 2009, 23, 64-74.	4.1	141
124	Interest in infants by female rhesus monkeys with neonatal lesions of the amygdala or hippocampus. Neuroscience, 2009, 162, 881-891.	2.3	27
125	Animal models of autism spectrum disorders: Information for neurotoxicologists. NeuroToxicology, 2009, 30, 811-821.	3.0	40
126	The Nonhuman Primate Amygdala Is Necessary for the Acquisition but not the Retention of Fear-Potentiated Startle. Biological Psychiatry, 2009, 65, 241-248.	1.3	55

#	Article	IF	CITATIONS
127	Offering to Share: How to Put Heads Together in Autism Neuroimaging. Journal of Autism and Developmental Disorders, 2008, 38, 2-13.	2.7	27
128	Brief Report: Methods for Acquiring Structural MRI Data in Very Young Children with Autism Without the Use of Sedation. Journal of Autism and Developmental Disorders, 2008, 38, 1581-1590.	2.7	109
129	Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. Journal of Comparative Neurology, 2008, 509, 608-641.	1.6	100
130	Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus. Journal of Comparative Neurology, 2008, 511, 497-520.	1.6	35
131	Neuroanatomy of autism. Trends in Neurosciences, 2008, 31, 137-145.	8.6	1,308
132	Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain, Behavior, and Immunity, 2008, 22, 806-816.	4.1	203
133	Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: A microPET imaging study. NeuroImage, 2008, 39, 832-846.	4.2	35
134	Acoustic Startle Reflex in Rhesus Monkeys: A Review. Reviews in the Neurosciences, 2008, 19, 171-85.	2.9	66
135	The Amygdala, Autism and Anxiety. Novartis Foundation Symposium, 2008, , 177-197.	1.1	52
136	Bilateral neurotoxic amygdala lesions in rhesus monkeys (Macaca mulatta): Consistent pattern of behavior across different social contexts Behavioral Neuroscience, 2008, 122, 251-266.	1.2	40
137	Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry. Journal of Neuroscience, 2007, 27, 11725-11735.	3.6	253
138	Postnatal Development of the Primate Hippocampal Formation. Developmental Neuroscience, 2007, 29, 179-192.	2.0	80
139	Role of the Primate Amygdala in Fear-Potentiated Startle: Effects of Chronic Lesions in the Rhesus Monkey. Journal of Neuroscience, 2007, 27, 7386-7396.	3.6	59
140	Social Neuroscience: Progress and Implications for Mental Health. Perspectives on Psychological Science, 2007, 2, 99-123.	9.0	98
141	EEG Sharp Waves and Sparse Ensemble Unit Activity in the Macaque Hippocampus. Journal of Neurophysiology, 2007, 98, 898-910.	1.8	134
142	Hippocampal size positively correlates with verbal IQ in male children. Hippocampus, 2007, 17, 486-493.	1.9	37
143	Entorhinal cortex of the monkey: VII. Intrinsic connections. Journal of Comparative Neurology, 2007, 500, 612-633.	1.6	53
144	Reactive plasticity in the dentate gyrus following bilateral entorhinal cortex lesions in cynomolgus monkeys. Journal of Comparative Neurology, 2007, 502, 192-201.	1.6	12

#	Article	IF	CITATIONS
145	Macaque monkey retrosplenial cortex: III. Cortical efferents. Journal of Comparative Neurology, 2007, 502, 810-833.	1.6	292
146	Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nature Neuroscience, 2007, 10, 234-239.	14.8	45
147	Autoantibodies in Autism Spectrum Disorders (ASD). Annals of the New York Academy of Sciences, 2007, 1107, 79-91.	3.8	85
148	The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 2007, 163, 3-790.	1.4	633
149	Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiology of Aging, 2006, 27, 1405-1415.	3.1	67
150	Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): Generality and individual consistency of effects Emotion, 2006, 6, 73-81.	1.8	121
151	Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. Journal of Comparative Neurology, 2006, 496, 655-667.	1.6	133
152	Hippocampal Lesion Prevents Spatial Relational Learning in Adult Macaque Monkeys. Journal of Neuroscience, 2006, 26, 4546-4558.	3.6	125
153	Stereological Analysis of Amygdala Neuron Number in Autism. Journal of Neuroscience, 2006, 26, 7674-7679.	3.6	351
154	The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. Journal of Comparative Neurology, 2005, 486, 295-317.	1.6	204
155	Stereological estimation of the number of neurons in the human amygdaloid complex. Journal of Comparative Neurology, 2005, 491, 320-329.	1.6	93
156	Hippocampal Formation. , 2004, , 871-914.		83
157	Hippocampal Formation. , 2004, , 635-704.		191
158	Investigation of Neuroanatomical Differences Between Autism and AspergerSyndrome. Archives of General Psychiatry, 2004, 61, 291.	12.3	136
159	Entorhinal Cortex Lesions Disrupt the Relational Organization of Memory in Monkeys. Journal of Neuroscience, 2004, 24, 9811-9825.	3.6	178
160	How do rhesus monkeys (Macaca mulatta) scan faces in a visual paired comparison task?. Animal Cognition, 2004, 7, 25-36.	1.8	149
161	Nonphosphorylated highâ€molecularâ€weight neurofilament expression suggests early maturation of the monkey subiculum. Hippocampus, 2004, 14, 797-801.	1.9	15
162	Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. Journal of Comparative Neurology, 2004, 470, 317-329.	1.6	45

#	Article	IF	CITATIONS
163	Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections. Journal of Comparative Neurology, 2004, 472, 371-394.	1.6	112
164	The Amygdala Is Enlarged in Children But Not Adolescents with Autism; the Hippocampus Is Enlarged at All Ages. Journal of Neuroscience, 2004, 24, 6392-6401.	3.6	727
165	The amygdala: is it an essential component of the neural network for social cognition?. Neuropsychologia, 2003, 41, 235-240.	1.6	81
166	The amygdala: is it an essential component of the neural network for social cognition?. Neuropsychologia, 2003, 41, 517-522.	1.6	82
167	Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. Journal of Comparative Neurology, 2003, 463, 67-91.	1.6	103
168	Reminiscence. Journal of Comparative Neurology, 2003, 463, 66-66.	1.6	0
169	Macaque monkey retrosplenial cortex: II. Cortical afferents. Journal of Comparative Neurology, 2003, 466, 48-79.	1.6	363
170	The amygdala and autism: implications from non-human primate studies. Genes, Brain and Behavior, 2003, 2, 295-302.	2.2	145
171	Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience, 2003, 118, 1099-1120.	2.3	570
172	The Amygdala, Social Behavior, and Danger Detection. Annals of the New York Academy of Sciences, 2003, 1000, 337-347.	3.8	242
173	The amygdala, autism and anxiety. Novartis Foundation Symposium, 2003, 251, 177-87; discussion 187-97, 281-97.	1.1	24
174	An integrative, multidisciplinary approach to the study of brain–behavior relations in the context of typical and atypical development. Development and Psychopathology, 2002, 14, 499-520.	2.3	115
175	The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biological Psychiatry, 2002, 51, 11-17.	1.3	328
176	Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 2002, 52, 478-502.	1.3	355
177	Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus, 2002, 12, 186-205.	1.9	86
178	Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex. Journal of Comparative Neurology, 2002, 447, 394-420.	1.6	267
179	Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. Journal of Comparative Neurology, 2002, 451, 45-61.	1.6	63
180	Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. Journal of Comparative Neurology, 2002, 451, 301-323.	1.6	314

#	Article	IF	CITATIONS
181	Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience, 2001, 106, 653-658.	2.3	229
182	Reduction in Opioid- and Cannabinoid-Induced Antinociception in Rhesus Monkeys after Bilateral Lesions of the Amygdaloid Complex. Journal of Neuroscience, 2001, 21, 8238-8246.	3.6	84
183	The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta) Behavioral Neuroscience, 2001, 115, 515-544.	1.2	248
184	Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. Journal of Comparative Neurology, 2001, 430, 264-281.	1.6	66
185	Magnetic resonance imaging of the post-mortem autistic brain. Journal of Autism and Developmental Disorders, 2001, 31, 561-568.	2.7	35
186	Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. Journal of Comparative Neurology, 2000, 418, 457-472.	1.6	90
187	Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. Journal of Comparative Neurology, 2000, 421, 52-79.	1.6	167
188	Macaque monkey retrosplenial cortex: I. Three-dimensional and cytoarchitectonic organization. Journal of Comparative Neurology, 2000, 426, 339-365.	1.6	79
189	Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus, 2000, 10, 420-430.	1.9	702
190	A double labeling technique using WGA-apoHRP-gold as a retrograde tracer and non-isotopic in situ hybridization histochemistry for the detection of mRNA. Journal of Neuroscience Methods, 2000, 101, 9-17.	2.5	12
191	Autism Spectrum Disorders. Neuron, 2000, 28, 355-363.	8.1	452
192	Hippocampal-neocortical interaction: A hierarchy of associativity. , 2000, 10, 420.		1
193	Hippocampalâ€neocortical interaction: A hierarchy of associativity. Hippocampus, 2000, 10, 420-430.	1.9	5
194	Introduction: What is where in the medial temporal lobe?. Hippocampus, 1999, 9, 1-6.	1.9	58
195	Distribution of GABAergic cells and fibers in the hippocampal formation of the Macaque monkey: An immunohistochemical and in situ hybridization study. Journal of Comparative Neurology, 1999, 408, 237-271.	1.6	21
196	Memory Lost and Regained Following Bilateral Hippocampal Damage. Journal of Cognitive Neuroscience, 1999, 11, 682-697.	2.3	66
197	Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. Handbook of Chemical Neuroanatomy, 1999, , 285-401.	0.3	7
198	Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing andin situhybridization study. European Journal of Neuroscience, 1998, 10, 2924-2933.	2.6	57

#	Article	IF	CITATIONS
199	Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex. , 1998, 391, 293-321.		393
200	Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. Journal of Comparative Neurology, 1998, 398, 25-48.	1.6	318
201	Entorhinal cortex of the rat: Organization of intrinsic connections. , 1998, 398, 49-82.		213
202	Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Journal of Comparative Neurology, 1998, 398, 179-205.	1.6	626
203	Organization of the intrinsic connections of the monkey amygdaloid complex: Projections originating in the lateral nucleus. , 1998, 398, 431-458.		115
204	Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. , 1998, 398, 25.		1
205	Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. Journal of Comparative Neurology, 1998, 398, 25-48.	1.6	14
206	Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. , 1998, 398, 179.		1
207	Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. European Journal of Neuroscience, 1998, 10, 2924-2933.	2.6	2
208	How Do Monkeys Look at Faces?. Journal of Cognitive Neuroscience, 1997, 9, 611-623.	2.3	123
209	H. M.'s Medial Temporal Lobe Lesion: Findings from Magnetic Resonance Imaging. Journal of Neuroscience, 1997, 17, 3964-3979.	3.6	407
210	Insular Cortical Projections to Functional Regions of the Striatum Correlate with Cortical Cytoarchitectonic Organization in the Primate. Journal of Neuroscience, 1997, 17, 9686-9705.	3.6	303
211	Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection. , 1996, 375, 527-551.		41
212	Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. , 1996, 375, 552-582.		177
213	Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. Journal of Comparative Neurology, 1996, 375, 552-582.	1.6	2
214	Three Cases of Enduring Memory Impairment after Bilateral Damage Limited to the Hippocampal Formation. Journal of Neuroscience, 1996, 16, 5233-5255.	3.6	688
215	Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus, 1995, 5, 390-408.	1.9	516
216	Cholinergin innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferasse immunoreactivity in theMacaca fascicularis andMacaca mulatta monkeys. Journal of Comparative Neurology, 1995, 355, 135-170.	1.6	59

#	Article	IF	CITATIONS
217	A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. Journal of Comparative Neurology, 1995, 362, 17-45.	1.6	289
218	Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature, 1995, 377, 340-344.	27.8	651
219	Cognitive neuroscience. Current Opinion in Neurobiology, 1995, 5, 137-140.	4.2	2
220	Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. Journal of Comparative Neurology, 1995, 356, 288-310.	1.6	223
221	Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. Journal of Comparative Neurology, 1994, 350, 497-533.	1.6	1,064
222	Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The amygdaloid complex. Journal of Comparative Neurology, 1993, 331, 14-36.	1.6	72
223	Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The hippocampal formation. Journal of Comparative Neurology, 1993, 331, 37-74.	1.6	74
224	Distribution of calbindin-D28kimmunoreactivity in the monkey temporal lobe: The amygdaloid complex. Journal of Comparative Neurology, 1993, 331, 199-224.	1.6	54
225	Morphological analyses of the brains of behaviorally characterized aged nonhuman primates. Neurobiology of Aging, 1993, 14, 671-672.	3.1	38
226	Emerging principles of intrinsic hippocampal organization. Current Opinion in Neurobiology, 1993, 3, 225-229.	4.2	192
227	Individual differences in the cognitive and neurobiological consequences of normal aging. Trends in Neurosciences, 1992, 15, 340-345.	8.6	261
228	Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Experimental Brain Research, 1992, 88, 375-388.	1.5	161
229	Projections from the lateral nucleus to the basal nucleus of the amygdala: A light and electron microscopic PHA-L study in the rat. Journal of Comparative Neurology, 1992, 323, 586-601.	1.6	111
230	Learning and memory. Brain Research Reviews, 1991, 16, 193-220.	9.0	133
231	Recognition memory deficits in a subpopulation of aged monkeys resemble the effects of medial temporal lobe damage. Neurobiology of Aging, 1991, 12, 481-486.	3.1	138
232	Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. Journal of Comparative Neurology, 1991, 307, 437-459.	1.6	438
233	Distribution of reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHâ€d) cells and fibers in the monkey amygdaloid complex. Journal of Comparative Neurology, 1991, 313, 326-348.	1.6	50
234	Organization of CA1 projections to the subiculum: A PHA-L analysis in the rat. Hippocampus, 1991, 1, 415-435.	1.9	228

#	Article	IF	CITATIONS
235	Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. Journal of Comparative Neurology, 1990, 295, 580-623.	1.6	779
236	Quantitative, threeâ€dimensional analysis of granule cell dendrites in the rat dentate gyrus. Journal of Comparative Neurology, 1990, 302, 206-219.	1.6	208
237	Cortical inputs to the CA1 field of the monkey hippocampus originate from the perirhinal and parahippocampal cortex but not from area TE. Neuroscience Letters, 1990, 115, 43-48.	2.1	114
238	Chapter 1 Chapter Neurons, numbers and the hippocampal network. Progress in Brain Research, 1990, 83, 1-11.	1.4	400
239	Hippocampal Formation. , 1990, , 711-755.		277
240	Cholinergic innervation of the monkey amygdala: An immunohistochemical analysis with antisera to choline acetyltransferase. Journal of Comparative Neurology, 1989, 281, 337-361.	1.6	148
241	Distribution of somatostatin-like immunoreactivity in the monkey amygdala. Journal of Comparative Neurology, 1989, 284, 294-313.	1.6	54
242	Description of brain injury in the amnesic patient N.A. Based on magnetic resonance imaging. Experimental Neurology, 1989, 105, 23-35.	4.1	107
243	Organization of radial glial cells during the development of the rat dentate gyrus. Journal of Comparative Neurology, 1987, 264, 449-479.	1.6	226
244	A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. Journal of Comparative Neurology, 1986, 246, 435-458.	1.6	446
245	The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. Journal of Neurocytology, 1985, 14, 835-857.	1.5	289
246	Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. Journal of Comparative Neurology, 1981, 195, 51-86.	1.6	555
247	Subcortical afferents to the hippocampal formation in the monkey. Journal of Comparative Neurology, 1980, 189, 573-591.	1.6	377
248	The effects of neonatal 6-hydroxydopamine treatment on morphological plasticity in the dentate gyrus of the rat following entorhinal lesions. Journal of Comparative Neurology, 1980, 194, 171-191.	1.6	50
249	Synaptic extensions from the mossy fibers of the fascia dentata. Anatomy and Embryology, 1979, 155, 241-251.	1.5	91
250	Neuronal dendritic neoformations and neuroglial alterations in the senile dog (translation of) Tj ETQq0 0 0 rgBT la Universidad de Madrid, Tomo XII, pp. 39–53, 1914. Behavioral Biology, 1978, 24, 123-140.	/Overlock 2.2	10 Tf 50 147 2
251	A golgi study of cell types in the hilar region of the hippocampus in the rat. Journal of Comparative Neurology, 1978, 182, 851-914.	1.6	835
252	A hippocampal interneuron observed in the inferior region. Brain Research, 1977, 124, 225-236.	2.2	35

#	Article	IF	CITATIONS
253	Locus coeruleus and intracranial self-stimulation: A cautionary note. Behavioral Biology, 1975, 13, 331-338.	2.2	71
254	Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. , 0, .		1
255	Neuroscience of Autism. , 0, , 379-392.		2