
Michael T Tate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911061/publications.pdf Version: 2024-02-01

Μιςήλει Τ.Τλτε

#	Article	IF	CITATIONS
1	Using Carbon, Nitrogen, and Mercury Isotope Values to Distinguish Mercury Sources to Alaskan Lake Trout. Environmental Science and Technology Letters, 2022, 9, 312-319.	8.7	5
2	Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.	27.8	38
3	Methylmercury Stable Isotopes: New Insights on Assessing Aquatic Food Web Bioaccumulation in Legacy Impacted Regions. ACS ES&T Water, 2022, 2, 701-709.	4.6	7
4	Decadal trends of mercury cycling and bioaccumulation within Everglades National Park. Science of the Total Environment, 2022, 838, 156031.	8.0	7
5	The influence of legacy contamination on the transport and bioaccumulation of mercury within the Mobile River Basin. Journal of Hazardous Materials, 2021, 404, 124097.	12.4	10
6	Examining historical mercury sources in the Saint Louis River estuary: How legacy contamination influences biological mercury levels in Great Lakes coastal regions. Science of the Total Environment, 2021, 779, 146284.	8.0	13
7	Enhanced Susceptibility of Methylmercury Bioaccumulation into Seston of the Laurentian Great Lakes. Environmental Science & Technology, 2021, 55, 12714-12723.	10.0	15
8	Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways. Applied and Environmental Microbiology, 2021, 87, e0067821.	3.1	3
9	Aqueous Elemental Mercury Production versus Mercury Inventories in the Lake Michigan Airshed: Deciphering the Spatial and Diel Controls of Mercury Gradients in Air and Water. ACS ES&T Water, 2021, 1, 719-727.	4.6	6
10	Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices. Analytical and Bioanalytical Chemistry, 2020, 412, 681-690.	3.7	15
11	Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States. Environmental Science & Technology, 2019, 53, 10110-10119.	10.0	26
12	Atmospheric Concentrations and Wet/Dry Loadings of Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada. Environmental Science & Technology, 2019, 53, 8017-8026.	10.0	29
13	Mercury source changes and food web shifts alter contamination signatures of predatory fish from Lake Michigan. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23600-23608.	7.1	35
14	Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes. Environmental Science & Technology, 2018, 52, 2768-2776.	10.0	49
15	Microbial mercury methylation in Antarctic sea ice. Nature Microbiology, 2016, 1, 16127.	13.3	158
16	Influence of <i>Cladophora</i> –Quagga Mussel Assemblages on Nearshore Methylmercury Production in Lake Michigan. Environmental Science & Technology, 2015, 49, 7606-7613.	10.0	25
17	The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment. Global Biogeochemical Cycles, 2012, 26, .	4.9	45
18	Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America. Journal of Geophysical Research, 2010, 115, .	3.3	84

#	Article	IF	CITATIONS
19	Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Applied Geochemistry, 2008, 23, 419-437.	3.0	72
20	Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16586-16591	7.1	398

20 Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16586-16591.