
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7910968/publications.pdf Version: 2024-02-01



TEDDI S HOCUE

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assessing the effects of climate change on urban watersheds: a review and call for future research.<br>Environmental Reviews, 2022, 30, 61-71.                                                                                          | 2.1 | 10        |
| 2  | Thermal Suitability of the Los Angeles River for Cold Water Resident and Migrating Fish Under Physical Restoration Alternatives. Frontiers in Environmental Science, 2022, 9, .                                                         | 1.5 | 2         |
| 3  | Improving the Decision-Making Process for Stormwater Management Using Life-Cycle Costs and a<br>Benefit Analysis. Journal of Sustainable Water in the Built Environment, 2022, 8, .                                                     | 0.9 | 1         |
| 4  | Forest fire mobilization and uptake of metals by biota temporarily exacerbates impacts of legacy mining. Science of the Total Environment, 2022, , 155034.                                                                              | 3.9 | 1         |
| 5  | Balancing water reuse and ecological support goals in an effluent dominated river. Journal of<br>Hydrology X, 2022, 15, 100124.                                                                                                         | 0.8 | 5         |
| 6  | Dilution and Pollution: Assessing the Impacts of Water Reuse and Flow Reduction on Water Quality in the Los Angeles River Basin. ACS ES&T Water, 2022, 2, 1309-1319.                                                                    | 2.3 | 3         |
| 7  | GIP-SWMM: A new Green Infrastructure Placement Tool coupled with SWMM. Journal of Environmental Management, 2021, 277, 111409.                                                                                                          | 3.8 | 23        |
| 8  | Satellites to Sprinklers: Assessing the Role of Climate and Land Cover Change on Patterns of Urban<br>Outdoor Water Use. Water Resources Research, 2021, 57, e2020WR027587.                                                             | 1.7 | 5         |
| 9  | A Site-Scale Tool for Performance-Based Design of Stormwater Best Management Practices. Water<br>(Switzerland), 2021, 13, 844.                                                                                                          | 1.2 | 3         |
| 10 | Assessing resilience of a dual drainage urban system to redevelopment and climate change. Journal of<br>Hydrology, 2021, 596, 126101.                                                                                                   | 2.3 | 11        |
| 11 | Simulating the thermal impact of substrate temperature on ecological restoration in shallow urban<br>rivers. Journal of Environmental Management, 2021, 289, 112560.                                                                    | 3.8 | 5         |
| 12 | Incorporating a Multiple-Benefit Analysis into a Stormwater Decision-Support Tool at Planning Level.<br>Journal of Sustainable Water in the Built Environment, 2021, 7, .                                                               | 0.9 | 4         |
| 13 | Building to conserve: Quantifying the outdoor water savings of residential redevelopment in Denver,<br>Colorado. Landscape and Urban Planning, 2021, 214, 104178.                                                                       | 3.4 | 2         |
| 14 | Reading the Green Landscape: Public Attitudes toward Green Stormwater Infrastructure and the<br>Perceived Nonmonetary Value of Its Co-Benefits in Three US Cities. Journal of Sustainable Water in the<br>Built Environment, 2021, 7, . | 0.9 | 10        |
| 15 | Raspy-Cal: A Genetic Algorithm-Based Automatic Calibration Tool for HEC-RAS Hydraulic Models.<br>Water (Switzerland), 2021, 13, 3061.                                                                                                   | 1.2 | 1         |
| 16 | Increased water yield and altered water partitioning follow wildfire in a forested catchment in the western United States. Ecohydrology, 2020, 13, e2170.                                                                               | 1.1 | 18        |
| 17 | Greening up stormwater infrastructure: Measuring vegetation to establish context and promote cobenefits in a diverse set of US cities. Urban Forestry and Urban Greening, 2020, 48, 126548.                                             | 2.3 | 23        |
| 18 | A geospatial approach for estimating hydrological connectivity of impervious surfaces. Journal of<br>Hydrology, 2020, 591, 125545.                                                                                                      | 2.3 | 18        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Regionalization of Default Parameters for Urban Stormwater Quality Models. Journal of the<br>American Water Resources Association, 2020, 56, 995-1009.                                                                          | 1.0 | 7         |
| 20 | Investigating Tradeoffs of Green to Grey Stormwater Infrastructure Using a Planning-Level Decision<br>Support Tool. Water (Switzerland), 2020, 12, 2005.                                                                        | 1.2 | 14        |
| 21 | Adequacy of Linear Models for Estimating Stormwater Best Management Practice Treatment<br>Performance. Journal of Sustainable Water in the Built Environment, 2020, 6, .                                                        | 0.9 | 4         |
| 22 | Stormwater control impacts on runoff volume and peak flow: A metaâ€analysis of watershed modelling studies. Hydrological Processes, 2020, 34, 3134-3152.                                                                        | 1.1 | 22        |
| 23 | SWMM Sensitivity to LID Siting and Routing Parameters: Implications for Stormwater Regulatory Compliance. Journal of the American Water Resources Association, 2020, 56, 790-809.                                               | 1.0 | 9         |
| 24 | Evaluation of a Distributed Streamflow Forecast Model at Multiple Watershed Scales. Water (Switzerland), 2020, 12, 1279.                                                                                                        | 1.2 | 3         |
| 25 | Stormwater Management Options and Decision-Making in Urbanized Watersheds of Los Angeles,<br>California. Journal of Sustainable Water in the Built Environment, 2020, 6, .                                                      | 0.9 | 8         |
| 26 | Urban irrigation in the modeling of a semi-arid urban environment: Ballona Creek watershed, Los<br>Angeles, California. Hydrological Sciences Journal, 2020, 65, 1344-1357.                                                     | 1.2 | 2         |
| 27 | Biochar-augmented biofilters to improve pollutant removal from stormwater – can they improve receiving water quality?. Environmental Science: Water Research and Technology, 2020, 6, 1520-1537.                                | 1.2 | 37        |
| 28 | Advancing Precipitation Estimation, Prediction, and Impact Studies. Bulletin of the American<br>Meteorological Society, 2020, 101, E1584-E1592.                                                                                 | 1.7 | 14        |
| 29 | A Bayesian hierarchical model for multiple imputation of urban spatio-temporal groundwater levels.<br>Statistics and Probability Letters, 2019, 144, 44-51.                                                                     | 0.4 | 8         |
| 30 | Evaluating the Impacts of Stormwater Management on Streamflow Regimes in the Los Angeles River.<br>Journal of Water Resources Planning and Management - ASCE, 2019, 145, .                                                      | 1.3 | 15        |
| 31 | Wildfire impacts on water quality, macroinvertebrate, and trout populations in the Upper Rio Grande.<br>Forest Ecology and Management, 2019, 453, 117636.                                                                       | 1.4 | 19        |
| 32 | Site-Scale Integrated Decision Support Tool (i-DSTss) for Stormwater Management. Water<br>(Switzerland), 2019, 11, 2022.                                                                                                        | 1.2 | 17        |
| 33 | Assessment of Groundwater Depletion and Implications for Management in the Denver Basin Aquifer<br>System. Journal of the American Water Resources Association, 2019, 55, 1130-1148.                                            | 1.0 | 8         |
| 34 | An integrated statistical and deterministic hydrologic model for analyzing trace organic<br>contaminants in commercial and high-density residential stormwater runoff. Science of the Total<br>Environment, 2019, 673, 656-667. | 3.9 | 6         |
| 35 | Activeâ€Passive Surface Water Classification: A New Method for Highâ€Resolution Monitoring of Surface<br>Water Dynamics. Geophysical Research Letters, 2019, 46, 4694-4704.                                                     | 1.5 | 15        |
| 36 | Occurrence of Urban-Use Pesticides and Management with Enhanced Stormwater Control Measures at the Watershed Scale. Environmental Science & Technology, 2019, 53, 3634-3644.                                                    | 4.6 | 34        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Evaluation of Groundwater Levels in the Arapahoe Aquifer Using Spatiotemporal Regression Kriging.<br>Water Resources Research, 2019, 55, 2820-2837.                                                        | 1.7  | 48        |
| 38 | A Rainwater Harvesting Accounting Tool for Water Supply Availability in Colorado. Water (Switzerland), 2019, 11, 2205.                                                                                     | 1.2  | 5         |
| 39 | Predicting Parcel-Scale Redevelopment Using Linear and Logistic Regression—the Berkeley<br>Neighborhood Denver, Colorado Case Study. Sustainability, 2019, 11, 1882.                                       | 1.6  | 10        |
| 40 | Decision Making on the Gray-Green Stormwater Infrastructure Continuum. Journal of Sustainable<br>Water in the Built Environment, 2019, 5, .                                                                | 0.9  | 41        |
| 41 | Adapting Urban Water Systems to Manage Scarcity in the 21st Century: The Case of Los Angeles.<br>Environmental Management, 2019, 63, 293-308.                                                              | 1.2  | 17        |
| 42 | Evaluating the factors responsible for post-fire water quality response in forests of the western<br>USA. International Journal of Wildland Fire, 2019, 28, 769.                                           | 1.0  | 32        |
| 43 | Multiple Pathways to Bacterial Load Reduction by Stormwater Best Management Practices: Trade-Offs<br>in Performance, Volume, and Treated Area. Environmental Science & Technology, 2018, 52,<br>6370-6379. | 4.6  | 30        |
| 44 | Enhancement of a Parsimonious Water Balance Model to Simulate Surface Hydrology in a Glacierized<br>Watershed. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1116-1132.                     | 1.0  | 7         |
| 45 | Urban Irrigation Suppresses Land Surface Temperature and Changes the Hydrologic Regime in Semi-Arid<br>Regions. Water (Switzerland), 2018, 10, 1563.                                                       | 1.2  | 13        |
| 46 | Appreciation for <i>Water Resources Research</i> Reviewers. Water Resources Research, 2018, 54, 7114-7137.                                                                                                 | 1.7  | 0         |
| 47 | Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 2018, 27, 203.                                                                                      | 1.0  | 75        |
| 48 | The economic value of local water supplies in Los Angeles. Nature Sustainability, 2018, 1, 289-297.                                                                                                        | 11.5 | 29        |
| 49 | Characterization and evaluation of controls on post-fire streamflow response across western US watersheds. Hydrology and Earth System Sciences, 2018, 22, 1221-1237.                                       | 1.9  | 43        |
| 50 | Assessing the feasibility of using produced water for irrigation in Colorado. Science of the Total Environment, 2018, 640-641, 619-628.                                                                    | 3.9  | 61        |
| 51 | Hydrologic Regime Changes in a High-Latitude Glacierized Watershed under Future Climate<br>Conditions. Water (Switzerland), 2018, 10, 128.                                                                 | 1.2  | 13        |
| 52 | High-Resolution Modeling of Infill Development Impact on Stormwater Dynamics in Denver, Colorado.<br>Journal of Sustainable Water in the Built Environment, 2018, 4, .                                     | 0.9  | 20        |
| 53 | A vision for Water Resources Research. Water Resources Research, 2017, 53, 4530-4532.                                                                                                                      | 1.7  | 0         |
| 54 | Urban Streamflow Response to Imported Water and Water Conservation Policies in Los Angeles,<br>California. Journal of the American Water Resources Association, 2017, 53, 626-640.                         | 1.0  | 14        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Water Use for Hydraulic Fracturing of Oil and Gas in the South Platte River Basin, Colorado. Journal of the American Water Resources Association, 2017, 53, 839-853.                                 | 1.0 | 10        |
| 56 | Case Studies of a MODIS-Based Potential Evapotranspiration Input to the Sacramento Soil Moisture Accounting Model. Journal of Hydrometeorology, 2017, 18, 151-158.                                   | 0.7 | 9         |
| 57 | Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region.<br>Remote Sensing, 2017, 9, 184.                                                                      | 1.8 | 20        |
| 58 | Downscaling SMAP and SMOS soil moisture with moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona. Journal of Applied Remote Sensing, 2017, 11, 026021. | 0.6 | 24        |
| 59 | Assessing Satellite and Groundâ€Based Potential Evapotranspiration for Hydrologic Applications in the<br>Colorado River Basin. Journal of the American Water Resources Association, 2016, 52, 48-66. | 1.0 | 6         |
| 60 | Wildfire, water, and society: Toward integrative research in the "Anthropocene― Anthropocene, 2016, 16, 16-27.                                                                                       | 1.6 | 34        |
| 61 | Impact of lateral flow and spatial scaling on the simulation of semiâ€∎rid urban land surfaces in an integrated hydrologic and land surface model. Hydrological Processes, 2016, 30, 1192-1207.      | 1.1 | 8         |
| 62 | California Drought — What is Different Today?. Journal of Extreme Events, 2015, 02, 1502002.                                                                                                         | 1.2 | 2         |
| 63 | California's New Normal? Recurring Drought: Addressing Winners and Losers. Local Environment, 2015, 20, 850-854.                                                                                     | 1.1 | 7         |
| 64 | Distributed Hydrologic Modeling Using Satellite-Derived Potential Evapotranspiration. Journal of<br>Hydrometeorology, 2015, 16, 129-146.                                                             | 0.7 | 27        |
| 65 | Are you watering your lawn?. Science, 2015, 348, 1319-1320.                                                                                                                                          | 6.0 | 26        |
| 66 | Incorporating an Urban Irrigation Module into the Noah Land Surface Model Coupled with an Urban<br>Canopy Model. Journal of Hydrometeorology, 2014, 15, 1440-1456.                                   | 0.7 | 60        |
| 67 | Evaluating Pre―and Postâ€Fire Peak Discharge Predictions across Western U.S. Watersheds. Journal of the American Water Resources Association, 2014, 50, 1540-1557.                                   | 1.0 | 12        |
| 68 | Assessment of SWE data assimilation for ensemble streamflow predictions. Journal of Hydrology, 2014, 519, 2737-2746.                                                                                 | 2.3 | 27        |
| 69 | Chemical flushing from an urban-fringe watershed: hydrologic and riparian soil dynamics.<br>Environmental Earth Sciences, 2014, 72, 879-889.                                                         | 1.3 | 5         |
| 70 | Seasonal controls on stream chemical export across diverse coastal watersheds in the USA.<br>Hydrological Processes, 2013, 27, 1440-1453.                                                            | 1.1 | 7         |
| 71 | Evaluation of a MODIS triangle-based evapotranspiration algorithm for semi-arid regions. Journal of<br>Applied Remote Sensing, 2013, 7, 073493.                                                      | 0.6 | 23        |
| 72 | Stormwater contaminant loading following southern California wildfires. Environmental<br>Toxicology and Chemistry, 2012, 31, 2625-2638.                                                              | 2.2 | 62        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Improving Spatial Soil Moisture Representation Through Integration of AMSR-E and MODIS Products.<br>IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 446-460.                                         | 2.7 | 135       |
| 74 | Integrating hydrologic modeling and land use projections for evaluation of hydrologic response and regional water supply impacts in semi-arid environments. Environmental Earth Sciences, 2012, 65, 1671-1685.     | 1.3 | 38        |
| 75 | Corruption of parameter behavior and regionalization by model and forcing data errors: A Bayesian example using the SNOW17 model. Water Resources Research, 2011, 47, .                                            | 1.7 | 28        |
| 76 | Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds.<br>Catena, 2011, 87, 240-252.                                                                                    | 2.2 | 83        |
| 77 | Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes.<br>Advances in Water Resources, 2011, 34, 114-127.                                                             | 1.7 | 66        |
| 78 | Climate signal propagation in southern California aquifers. Water Resources Research, 2010, 46, .                                                                                                                  | 1.7 | 29        |
| 79 | Modeling Postfire Response and Recovery using the Hydrologic Engineering Center Hydrologic<br>Modeling System (HECâ€HMS) <sup>1</sup> . Journal of the American Water Resources Association, 2009,<br>45, 702-714. | 1.0 | 38        |
| 80 | Linking hydrology and stream geochemistry in urban fringe watersheds. Journal of Hydrology, 2008, 360, 31-47.                                                                                                      | 2.3 | 24        |
| 81 | Operational snow modeling: Addressing the challenges of an energy balance model for National<br>Weather Service forecasts. Journal of Hydrology, 2008, 360, 48-66.                                                 | 2.3 | 79        |
| 82 | Evaluation of a MODIS-Based Potential Evapotranspiration Product at the Point Scale. Journal of Hydrometeorology, 2008, 9, 444-460.                                                                                | 0.7 | 52        |
| 83 | Snow Model Verification Using Ensemble Prediction and Operational Benchmarks. Journal of Hydrometeorology, 2008, 9, 1402-1415.                                                                                     | 0.7 | 21        |
| 84 | Evaluating model performance and parameter behavior for varying levels of land surface model complexity. Water Resources Research, 2006, 42, .                                                                     | 1.7 | 53        |
| 85 | A â€~User-Friendly' approach to parameter estimation in hydrologic models. Journal of Hydrology, 2006,<br>320, 202-217.                                                                                            | 2.3 | 49        |
| 86 | Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments. Journal of<br>Hydrometeorology, 2005, 6, 68-84.                                                                            | 0.7 | 119       |
| 87 | Intercomparison of Rain Gauge, Radar, and Satellite-Based Precipitation Estimates with Emphasis on<br>Hydrologic Forecasting. Journal of Hydrometeorology, 2005, 6, 497-517.                                       | 0.7 | 217       |
| 88 | A Comparison of the Triangle Retrieval and Variational Data Assimilation Methods for Surface<br>Turbulent Flux Estimation. Journal of Hydrometeorology, 2005, 6, 1063-1072.                                        | 0.7 | 32        |
| 89 | Regional and global hydrology and water resources issues: The role of international and national programs. Aquatic Sciences, 2002, 64, 317-327.                                                                    | 0.6 | 9         |
| 90 | A Multistep Automatic Calibration Scheme for River Forecasting Models. Journal of<br>Hydrometeorology, 2000, 1, 524-542.                                                                                           | 0.7 | 134       |