Luc Harvengt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7910791/publications.pdf Version: 2024-02-01

LUC HADVENCT

#	Article	IF	CITATIONS
1	Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genetics and Genomes, 2013, 9, 883-899.	1.6	155
2	Xenomic networks variability and adaptation traits in wood decaying fungi. Microbial Biotechnology, 2013, 6, 248-263.	4.2	122
3	<i>De novo</i> assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnology Journal, 2014, 12, 286-299.	8.3	115
4	Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell, Tissue and Organ Culture, 2006, 86, 87-101.	2.3	81
5	Early molecular events involved in <i>Pinus pinaster</i> Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiologia Plantarum, 2014, 152, 184-201.	5.2	81
6	Establishment of a cryopreserved gene bank of European elms. Canadian Journal of Forest Research, 2004, 34, 43-55.	1.7	67
7	Improved RAPD amplification of recalcitrant plant DNA by the use of activated charcoal during DNA extraction. Plant Breeding, 1996, 115, 205-206.	1.9	54
8	In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?. PLoS ONE, 2010, 5, e11034.	2.5	52
9	Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics and Genomes, 2012, 8, 113-126.	1.6	51
10	Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell, Tissue and Organ Culture, 2006, 87, 95-108.	2.3	48
11	Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta, 2014, 240, 1075-1095.	3.2	48
12	Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology. Journal of Microbiological Methods, 2013, 92, 157-163.	1.6	41
13	Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytologist, 2006, 169, 35-44.	7.3	39
14	Diversification of Fungal Specific Class A Glutathione Transferases in Saprotrophic Fungi. PLoS ONE, 2013, 8, e80298.	2.5	38
15	Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis. Planta, 2001, 213, 828-832.	3.2	37
16	High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 494-504.	2.1	36
17	Characterization of a Phanerochaete chrysosporium Glutathione Transferase Reveals a Novel Structural and Functional Class with Ligandin Properties. Journal of Biological Chemistry, 2012, 287, 39001-39011.	3.4	33
18	Paternity recovery in two maritime pine polycross mating designs and consequences for breeding. Tree Genetics and Genomes, 2015, 11, 1.	1.6	33

#	Article	IF	CITATIONS
19	Towards genetic engineering of maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2002, 59, 687-697.	2.0	32

The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus) Tj ETQq0 0.0 rgBT /Oyerlock 10^{-2}

21	Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster. Annals of Forest Science, 2011, 68, 873-884.	2.0	28
22	Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Science, 2001, 160, 473-479.	3.6	27
23	Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus. Tree Physiology, 2018, 38, 409-422.	3.1	27
24	Expression of intron-encoded maturase-like polypeptides in potato chloroplasts. Current Genetics, 1994, 25, 158-163.	1.7	26
25	Special trends in <scp>CBF</scp> and <scp>DREB2</scp> groups in <i>Eucalyptus gunnii</i> vs <i>Eucalyptus grandis</i> suggest that <scp>CBF</scp> are master players in the tradeâ€off between growth and stress resistance. Physiologia Plantarum, 2017, 159, 445-467.	5.2	24
26	Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait. Molecular Ecology Notes, 2005, 5, 57-59.	1.7	21
27	Forward selection in a maritime pine polycross progeny trial using pedigree reconstruction. Annals of Forest Science, 2017, 74, 1.	2.0	16
28	Sink-cell-specific activity of a potato ADP-glucose pyrophosphorylase B-subunit promoter in transgenic potato and tomato plants. Planta, 1997, 203, 133-139.	3.2	15
29	Somatic Embryogenesis in Maritime Pine (Pinus pinaster Ait.). , 2005, , 107-119.		13

Two main genetic clusters with high admixture between forest and cultivated chestnut (Castanea) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 13

31	Transcriptional analysis of arogenate dehydratase genes identifies a link between phenylalanine biosynthesis and lignin biosynthesis. Journal of Experimental Botany, 2020, 71, 3080-3093.	4.8	10
32	Identification of Metabolic Pathways Differentially Regulated in Somatic and Zygotic Embryos of Maritime Pine. Frontiers in Plant Science, 2022, 13, .	3.6	8
33	Paternity recovery in two maritime pine polycross mating designs and consequences for breeding. , 0, .		1
34	La multiplication des pins. Biofutur, 2000, 2000, 12.	0.0	0
35	Conserver et utiliser les ressources génétiques des Ormes en France : bilan et perspectives. Revue Forestiere Francaise, 2017, , 573.	0.2	0