
P Leif Bergsagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7910421/publications.pdf Version: 2024-02-01

PIELE REPOSACEL

#	Article	IF	CITATIONS
1	BET Bromodomain Inhibition asÂa Therapeutic Strategy to Target c-Myc. Cell, 2011, 146, 904-917.	28.9	2,432
2	Initial genome sequencing and analysis of multiple myeloma. Nature, 2011, 471, 467-472.	27.8	1,288
3	Promiscuous Mutations Activate the Noncanonical NF-κB Pathway in Multiple Myeloma. Cancer Cell, 2007, 12, 131-144.	16.8	941
4	International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia, 2009, 23, 2210-2221.	7.2	775
5	Multiple myeloma: evolving genetic events and host interactions. Nature Reviews Cancer, 2002, 2, 175-187.	28.4	729
6	Multiple Myeloma: Increasing Evidence for a Multistep Transformation Process. Blood, 1998, 91, 3-21.	1.4	691
7	Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: A multicenter international myeloma working group study. Leukemia, 2012, 26, 149-157.	7.2	664
8	Genetics and Cytogenetics of Multiple Myeloma. Cancer Research, 2004, 64, 1546-1558.	0.9	642
9	Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood, 2005, 106, 296-303.	1.4	630
10	Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nature Genetics, 1997, 16, 260-264.	21.4	617
11	Clonal competition with alternating dominance in multiple myeloma. Blood, 2012, 120, 1067-1076.	1.4	575
12	Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-l°B signaling. Nature Immunology, 2008, 9, 1364-1370.	14.5	552
13	Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood, 2011, 118, 4771-4779.	1.4	552
14	Advances in biology of multiple myeloma: clinical applications. Blood, 2004, 104, 607-618.	1.4	548
15	The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood, 2022, 140, 1229-1253.	1.4	512
16	Molecular Pathogenesis and a Consequent Classification of Multiple Myeloma. Journal of Clinical Oncology, 2005, 23, 6333-6338.	1.6	507
17	The t(4;14) Translocation in Myeloma Dysregulates Both FGFR3and a Novel Gene, MMSET, Resulting in IgH/MMSET Hybrid Transcripts. Blood, 1998, 92, 3025-3034.	1.4	504
18	Management of Newly Diagnosed Symptomatic Multiple Myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines 2013. Mayo Clinic Proceedings, 2013, 88, 360-376.	3.0	440

#	Article	IF	CITATIONS
19	Chromosome translocations in multiple myeloma. Oncogene, 2001, 20, 5611-5622.	5.9	434
20	Management of Newly Diagnosed Symptomatic Multiple Myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines. Mayo Clinic Proceedings, 2009, 84, 1095-1110.	3.0	389
21	Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood, 2007, 109, 3177-3188.	1.4	379
22	MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature, 2011, 470, 124-128.	27.8	361
23	Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood, 2012, 120, 1060-1066.	1.4	357
24	Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13931-13936.	7.1	355
25	Frequent Dysregulation of the c-maf Proto-Oncogene at 16q23 by Translocation to an Ig Locus in Multiple Myeloma. Blood, 1998, 91, 4457-4463.	1.4	351
26	Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia, 2009, 23, 1337-1341.	7.2	347
27	Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. Blood, 2012, 119, 4391-4394.	1.4	338
28	Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell, 2004, 5, 191-199.	16.8	331
29	Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 228-233.	7.1	325
30	AID-Dependent Activation of a MYC Transgene Induces Multiple Myeloma in a Conditional Mouse Model of Post-Germinal Center Malignancies. Cancer Cell, 2008, 13, 167-180.	16.8	322
31	Genetic aberrations and survival in plasma cell leukemia. Leukemia, 2008, 22, 1044-1052.	7.2	299
32	Pomalidomide (CC4047) Plus Low-Dose Dexamethasone As Therapy for Relapsed Multiple Myeloma. Journal of Clinical Oncology, 2009, 27, 5008-5014.	1.6	286
33	Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood, 2011, 117, 4696-4700.	1.4	285
34	Molecular pathogenesis of multiple myeloma and its premalignant precursor. Journal of Clinical Investigation, 2012, 122, 3456-3463.	8.2	283
35	International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. Blood, 2011, 117, 6063-6073.	1.4	282
36	Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood, 2001, 97, 729-736.	1.4	269

#	Article	IF	CITATIONS
37	Classical and/or alternative NF- \hat{l}^{2} B pathway activation in multiple myeloma. Blood, 2010, 115, 3541-3552.	1.4	253
38	Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia, 2011, 25, 1026-1035.	7.2	239
39	Molecular Dissection of Hyperdiploid Multiple Myeloma by Gene Expression Profiling. Cancer Research, 2007, 67, 2982-2989.	0.9	236
40	WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Research, 2001, 61, 8068-73.	0.9	230
41	Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia, 2014, 28, 1725-1735.	7.2	221
42	Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood, 2012, 119, 2100-2105.	1.4	218
43	The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood, 1998, 92, 3025-34.	1.4	206
44	Multiple myeloma: increasing evidence for a multistep transformation process. Blood, 1998, 91, 3-21.	1.4	204
45	Mobilization in myeloma revisited: IMWG consensus perspectives on stem cell collection following initial therapy with thalidomide-, lenalidomide-, or bortezomib-containing regimens. Blood, 2009, 114, 1729-1735.	1.4	203
46	Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood, 2001, 98, 217-223.	1.4	198
47	Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia, 2006, 20, 2034-2040.	7.2	195
48	Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood, 2011, 118, 2970-2975.	1.4	193
49	A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia, 2007, 21, 529-534.	7.2	191
50	Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood, 2014, 124, 536-545.	1.4	190
51	Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood, 2016, 128, 1226-1233.	1.4	185
52	Pomalidomide (CC4047) plus low dose dexamethasone (Pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia, 2010, 24, 1934-1939.	7.2	182
53	IMWG consensus on maintenance therapy in multiple myeloma. Blood, 2012, 119, 3003-3015.	1.4	178
54	The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood, 2008, 111, 3145-3154.	1.4	176

#	Article	IF	CITATIONS
55	Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood, 2012, 120, 376-385.	1.4	174
56	Gene-expression profiling of Waldenstrol̀ m macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood, 2006, 108, 2755-2763.	1.4	166
57	Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5.	16.8	163
58	Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood, 2004, 103, 3521-3528.	1.4	159
59	Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood, 2005, 105, 4060-4069.	1.4	159
60	Treatment of Newly Diagnosed Multiple Myeloma Based on Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART): Consensus Statement. Mayo Clinic Proceedings, 2007, 82, 323-341.	3.0	155
61	Genetic events in the pathogenesis of multiple myeloma. Best Practice and Research in Clinical Haematology, 2007, 20, 571-596.	1.7	154
62	Identification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-I°B Signaling Pathways in Waldenstrol^m's Macroglobulinemia. Cancer Research, 2009, 69, 3579-3588.	0.9	154
63	Improving overall survival and overcoming adverse prognosis in the treatment of cytogenetically high-risk multiple myeloma. Blood, 2013, 121, 884-892.	1.4	153
64	Diagnosis and Management of Waldenström Macroglobulinemia: Mayo Stratification of Macroglobulinemia and Risk-Adapted Therapy (mSMART) Guidelines. Mayo Clinic Proceedings, 2010, 85, 824-833.	3.0	152
65	Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood, 2000, 95, 992-998.	1.4	151
66	Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications, 2018, 9, 4832.	12.8	144
67	Treatment of Newly Diagnosed Multiple Myeloma Based on Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART): Consensus Statement. Mayo Clinic Proceedings, 2007, 82, 323-341.	3.0	143
68	Long-term Results of Response to Therapy, Time to Progression, and Survival With Lenalidomide Plus Dexamethasone in Newly Diagnosed Myeloma. Mayo Clinic Proceedings, 2007, 82, 1179-1184.	3.0	142
69	Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia, 2013, 27, 2357-2365.	7.2	142
70	Approach to the treatment of multiple myeloma: a clash of philosophies. Blood, 2011, 118, 3205-3211.	1.4	137
71	Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncology, The, 2021, 22, e105-e118.	10.7	136
72	Single-Agent Lenalidomide in the Treatment of Previously Untreated Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2011, 29, 1175-1181.	1.6	134

#	Article	IF	CITATIONS
73	IAP antagonists induce anti-tumor immunity in multiple myeloma. Nature Medicine, 2016, 22, 1411-1420.	30.7	133
74	Phase II Trial of the Oral Mammalian Target of Rapamycin Inhibitor Everolimus in Relapsed or Refractory Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2010, 28, 1408-1414.	1.6	132
75	FGFR3 Activates RSK2 to Mediate Hematopoietic Transformation through Tyrosine Phosphorylation of RSK2 and Activation of the MEK/ERK Pathway. Cancer Cell, 2007, 12, 201-214.	16.8	130
76	Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood, 2009, 114, 518-521.	1.4	130
77	Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia, 2006, 20, 807-813.	7.2	129
78	Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunological Reviews, 2003, 194, 96-104.	6.0	125
79	Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood, 1998, 91, 4457-63.	1.4	121
80	Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma: a comparative analysis of 411 patients. Blood, 2010, 115, 1343-1350.	1.4	119
81	Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia, 2008, 22, 1282-1284.	7.2	118
82	Molecular pathogenesis of multiple myeloma: basic and clinical updates. International Journal of Hematology, 2013, 97, 313-323.	1.6	118
83	A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood, 2005, 106, 2156-2161.	1.4	115
84	Therapy for Relapsed Multiple Myeloma. Mayo Clinic Proceedings, 2017, 92, 578-598.	3.0	115
85	Immunosurveillance and therapy of multiple myeloma are CD226 dependent. Journal of Clinical Investigation, 2015, 125, 2077-2089.	8.2	111
86	Diagnosis and Management of Waldenström Macroglobulinemia. JAMA Oncology, 2017, 3, 1257.	7.1	110
87	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	1.6	110
88	MYC dysregulation in the progression of multiple myeloma. Leukemia, 2020, 34, 322-326.	7.2	108
89	Differential Regulation of IL-12 and IL-10 Gene Expression in Macrophages by the Basic Leucine Zipper Transcription Factor c-Maf Fibrosarcoma. Journal of Immunology, 2002, 169, 5715-5725.	0.8	107
90	Treatment of Immunoglobulin Light Chain Amyloidosis. Mayo Clinic Proceedings, 2015, 90, 1054-1081.	3.0	106

#	Article	IF	CITATIONS
91	Frequent Dysregulation of the c-maf Proto-Oncogene at 16q23 by Translocation to an Ig Locus in Multiple Myeloma. Blood, 1998, 91, 4457-4463.	1.4	101
92	Characterization of MYC Translocations in Multiple Myeloma Cell Lines. Journal of the National Cancer Institute Monographs, 2008, 2008, 25-31.	2.1	100
93	Insertion of Excised IgH Switch Sequences Causes Overexpression of Cyclin D1 in a Myeloma Tumor Cell. Molecular Cell, 1999, 3, 119-123.	9.7	98
94	Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood, 2010, 115, 1594-1604.	1.4	95
95	The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood, 2001, 97, 2413-2419.	1.4	91
96	The p97 Inhibitor CB-5083 Is a Unique Disrupter of Protein Homeostasis in Models of Multiple Myeloma. Molecular Cancer Therapeutics, 2017, 16, 2375-2386.	4.1	90
97	TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood, 2014, 123, 3305-3315.	1.4	89
98	CD28 Expressed on Malignant Plasma Cells Induces a Prosurvival and Immunosuppressive Microenvironment. Journal of Immunology, 2011, 187, 1243-1253.	0.8	84
99	The clinical significance of cereblon expression in multiple myeloma. Leukemia Research, 2014, 38, 23-28.	0.8	84
100	Overexpression of EZH2 in multiple myeloma is associated with poor prognosis and dysregulation of cell cycle control. Blood Cancer Journal, 2017, 7, e549-e549.	6.2	81
101	Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma: a Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Bone Marrow Transplantation, 2019, 54, 353-367.	2.4	81
102	MIP-1α (CCL3) is a downstream target of FGFR3 and RAS-MAPK signaling in multiple myeloma. Blood, 2006, 108, 3465-3471.	1.4	80
103	Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression. Journal of Clinical Investigation, 2018, 128, 2487-2499.	8.2	80
104	Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood, 1996, 88, 674-81.	1.4	80
105	CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood, 2014, 123, 3770-3779.	1.4	79
106	Smoldering multiple myeloma requiring treatment: time for a new definition?. Blood, 2013, 122, 4172-4181.	1.4	70
107	Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease. Science Translational Medicine, 2019, 11, .	12.4	69
108	Longâ€ŧerm results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom Macroglobulinemia. American Journal of Hematology, 2014, 89, 237-242.	4.1	68

#	Article	IF	CITATIONS
109	Phase 2 trial of ixazomib in patients with relapsed multiple myeloma not refractory to bortezomib. Blood Cancer Journal, 2015, 5, e338-e338.	6.2	68
110	Carfilzomib and the cardiorenal system in myeloma: an endothelial effect?. Blood Cancer Journal, 2016, 6, e384-e384.	6.2	68
111	NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood, 2012, 120, 3019-3029.	1.4	67
112	Cheâ€lâ€induced inhibition of <scp>mTOR</scp> pathway enables stressâ€induced autophagy. EMBO Journal, 2015, 34, 1214-1230.	7.8	66
113	Determinants of sensitivity to lovastatin-induced apoptosis in multiple myeloma. Molecular Cancer Therapeutics, 2007, 6, 1886-1897.	4.1	65
114	Molecular Mechanisms of Bortezomib Resistant Adenocarcinoma Cells. PLoS ONE, 2011, 6, e27996.	2.5	65
115	Role of Pirh2 in Mediating the Regulation of p53 and c-Myc. PLoS Genetics, 2011, 7, e1002360.	3.5	65
116	Revised diagnostic criteria for plasma cell leukemia: results of a Mayo Clinic study with comparison of outcomes to multiple myeloma. Blood Cancer Journal, 2018, 8, 116.	6.2	64
117	Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer Journal, 2019, 9, 19.	6.2	64
118	Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7729-7734.	7.1	62
119	Advances in Biology and Therapy of Multiple Myeloma. Hematology American Society of Hematology Education Program, 2003, 2003, 248-278.	2.5	61
120	Early Genetic Events Provide the Basis for a Clinical Classification of Multiple Myeloma. Hematology American Society of Hematology Education Program, 2005, 2005, 346-352.	2.5	61
121	Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozygous deletion in multiple myeloma cell lines: ectopic p18 expression inhibits growth and induces apoptosis. Leukemia, 2002, 16, 127-134.	7.2	60
122	Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells. Blood, 2014, 123, 725-733.	1.4	59
123	Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response. Blood Cancer Journal, 2020, 10, 82.	6.2	59
124	Clinical characteristics and treatment outcomes of newly diagnosed multiple myeloma with chromosome 1q abnormalities. Blood Advances, 2020, 4, 3509-3519.	5.2	58
125	Lenalidomide, cyclophosphamide and dexamethasone (CRd) for newly diagnosed multiple myeloma: Results from a phase 2 trial. American Journal of Hematology, 2011, 86, 640-645.	4.1	57
126	Acetyl-CoA Synthetase 2: A Critical Linkage in Obesity-Induced Tumorigenesis in Myeloma. Cell Metabolism, 2021, 33, 78-93.e7.	16.2	57

#	Article	IF	CITATIONS
127	Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma. Blood Cancer Journal, 2016, 6, e454-e454.	6.2	56
128	Evidence for Cytogenetic and Fluorescence In Situ Hybridization Risk Stratification of Newly Diagnosed Multiple Myeloma in the Era of Novel Therapies. Mayo Clinic Proceedings, 2010, 85, 532-537.	3.0	55
129	Pomalidomide, bortezomib, and dexamethasone for patients with relapsed lenalidomide-refractory multiple myeloma. Blood, 2017, 130, 1198-1204.	1.4	54
130	Transcriptional repression by the HDAC4–RelB–p52 complex regulates multiple myeloma survival and growth. Nature Communications, 2015, 6, 8428.	12.8	53
131	Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy inÂmultiple myeloma. Blood, 2022, 139, 3708-3721.	1.4	53
132	A murine cDNA encodes a pan-epithelial glycoprotein that is also expressed on plasma cells. Journal of Immunology, 1992, 148, 590-6.	0.8	53
133	Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications. Blood, 2009, 113, 635-645.	1.4	52
134	Identification of kinetin riboside as a repressor of CCND1 and CCND2 with preclinical antimyeloma activity. Journal of Clinical Investigation, 2008, 118, 1750-64.	8.2	52
135	Distinguishing primary and secondary translocations in multiple myeloma. DNA Repair, 2006, 5, 1225-1233.	2.8	51
136	Where We Were, Where We Are, Where We Are Going: Progress in Multiple Myeloma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , 199-203.	3.8	51
137	Randomized phase 2 trial of ixazomib and dexamethasone in relapsed multiple myeloma not refractory to bortezomib. Blood, 2016, 128, 2415-2422.	1.4	51
138	Multiple Myeloma: Increasing Evidence for a Multistep Transformation Process. Blood, 1998, 91, 3-21.	1.4	49
139	A comparison of lenalidomide/dexamethasone versus cyclophosphamide/lenalidomide/dexamethasone versus cyclophosphamide/bortezomib/dexamethasone in newly diagnosed multiple myeloma. British Journal of Haematology, 2012, 156, 326-333.	2.5	48
140	Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3534-3539.	7.1	47
141	MYC addiction: a potential therapeutic target in MM. Blood, 2012, 120, 2351-2352.	1.4	47
142	Differences in genomic abnormalities among African individuals with monoclonal gammopathies using calculated ancestry. Blood Cancer Journal, 2018, 8, 96.	6.2	47
143	Many Multiple Myelomas: Making More of the Molecular Mayhem. Hematology American Society of Hematology Education Program, 2011, 2011, 344-353.	2.5	46
144	Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood, 2000, 95, 992-8.	1.4	46

#	Article	IF	CITATIONS
145	Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma. Haematologica, 2015, 100, 534-841.	3.5	45
146	Panel sequencing for clinically oriented variant screening and copy number detection in 142 untreated multiple myeloma patients. Blood Cancer Journal, 2016, 6, e397-e397.	6.2	45
147	Antigen-mediated regulation in monoclonal gammopathies and myeloma. JCI Insight, 2018, 3, .	5.0	43
148	Phase Ib/II trial of <scp>CYKLONE</scp> (cyclophosphamide, carfilzomib, thalidomide and) Tj ETQq0 0 0 rgBT /O	verlock 10 2.5	Tf 50 622 To 42
149	The t(4;14) Translocation in Myeloma Dysregulates Both FGFR3and a Novel Gene, MMSET, Resulting in IgH/MMSET Hybrid Transcripts. Blood, 1998, 92, 3025-3034.	1.4	42
150	Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma. Leukemia, 2010, 24, 833-842.	7.2	41
151	Longâ€ŧerm survival with cyclophosphamide, bortezomib and dexamethasone induction therapy in patients with newly diagnosed multiple myeloma. British Journal of Haematology, 2014, 167, 563-565.	2.5	41
152	Advances in the pathogenesis and diagnosis of multiple myeloma. International Journal of Laboratory Hematology, 2015, 37, 108-114.	1.3	41
153	lgH Translocations in Multiple Myeloma: A Nearly Universal Event that Rarely Involves c-myc. Current Topics in Microbiology and Immunology, 1997, 224, 283-287.	1.1	40
154	<i>UCHL1</i> is a biomarker of aggressive multiple myeloma required for disease progression. Oncotarget, 2015, 6, 40704-40718.	1.8	39
155	Bone Lesions in Molecular Subtypes of Multiple Myeloma. New England Journal of Medicine, 2004, 351, 197-198.	27.0	38
156	Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination. Leukemia, 2020, 34, 245-256.	7.2	38
157	Multiple Myeloma. Hematology American Society of Hematology Education Program, 2001, 2001, 157-177.	2.5	37
158	Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia, 2019, 33, 1011-1022.	7.2	37
159	Tumor Burden Limits Bispecific Antibody Efficacy through T-cell Exhaustion Averted by Concurrent Cytotoxic Therapy. Blood Cancer Discovery, 2021, 2, 354-369.	5.0	37
160	Osteopontin dysregulation and lytic bone lesions in multiple myeloma. Hematological Oncology, 2007, 25, 16-20.	1.7	36
161	N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica, 2011, 96, 1653-1661.	3.5	36

162The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple
myeloma. Oncogene, 2014, 33, 316-325.36

#	Article	IF	CITATIONS
163	Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. Journal of Clinical Investigation, 2018, 128, 4682-4696.	8.2	35
164	The Drug Vehicle and Solvent N-Methylpyrrolidone Is an Immunomodulator and Antimyeloma Compound. Cell Reports, 2014, 7, 1009-1019.	6.4	34
165	The enigma of ectopic expression of FGFR3 in multiple myeloma: a critical initiating event or just a target for mutational activation during tumor progression. Current Opinion in Hematology, 2002, 9, 288-293.	2.5	33
166	Multiple myeloma cells' capacity to decompose H2O2 determines lenalidomide sensitivity. Blood, 2017, 129, 991-1007.	1.4	33
167	MiR-16 regulates crosstalk in NF-κB tolerogenic inflammatory signaling between myeloma cells and bone marrow macrophages. JCI Insight, 2019, 4, .	5.0	33
168	Rearrangements and Amplification of <i>IER3</i> (<i>IEX-1</i>) Represent a Novel and Recurrent Molecular Abnormality in Myelodysplastic Syndromes. Cancer Research, 2009, 69, 7518-7523.	0.9	32
169	High-Resolution Genomic Analysis in Waldenström's Macroglobulinemia Identifies Disease-Specific and Common Abnormalities with Marginal Zone Lymphomas. Clinical Lymphoma and Myeloma, 2009, 9, 39-42.	1.4	32
170	Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma. Cell Death and Disease, 2013, 4, e798-e798.	6.3	32
171	Implications of MYC Rearrangements in Newly Diagnosed Multiple Myeloma. Clinical Cancer Research, 2020, 26, 6581-6588.	7.0	32
172	Treatment of AL Amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement 2020 Update. Mayo Clinic Proceedings, 2021, 96, 1546-1577.	3.0	32
173	Ploidy status rarely changes in myeloma patients at disease progression. Leukemia Research, 2006, 30, 266-271.	0.8	31
174	Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature. Leukemia, 2008, 22, 459-461.	7.2	31
175	Lenalidomide Plus Dexamethasone (Rev/Dex) in Newly Diagnosed Myeloma: Response to Therapy, Time to Progression, and Survival Blood, 2006, 108, 798-798.	1.4	31
176	V. Molecular classification and risk stratification of myeloma. Hematological Oncology, 2013, 31, 38-41.	1.7	30
177	A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer Journal, 2022, 12, 21.	6.2	30
178	Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncolmmunology, 2015, 4, e1008850.	4.6	27
179	Mate pair sequencing outperforms fluorescence in situ hybridization in the genomic characterization of multiple myeloma. Blood Cancer Journal, 2019, 9, 103.	6.2	27
180	Evaluation of Revised International Staging System (R-ISS) for transplant-eligible multiple myeloma patients. Annals of Hematology, 2018, 97, 1453-1462.	1.8	26

#	Article	IF	CITATIONS
181	Pomalidomide (CC4047) Plus Low-Dose Dexamethasone (Pom/dex) Is Highly Effective Therapy in Relapsed Multiple Myeloma. Blood, 2008, 112, 866-866.	1.4	26
182	An integrin-targeted, pan-isoform, phosphoinositide-3 kinase inhibitor, SF1126, has activity against multiple myeloma in vivo. Cancer Chemotherapy and Pharmacology, 2013, 71, 867-881.	2.3	25
183	Preclinical anti-myeloma activity of EDO-S101, a new bendamustine-derived molecule with added HDACi activity, through potent DNA damage induction and impairment of DNA repair. Journal of Hematology and Oncology, 2017, 10, 127.	17.0	25
184	Pomalidomide, Bortezomib and Dexamethasone (PVD) for Patients with Relapsed Lenalidomide Refractory Multiple Myeloma (MM). Blood, 2014, 124, 304-304.	1.4	25
185	The varied distribution and impact of <i>RAS</i> codon and other key DNA alterations across the translocation cyclin D subgroups in multiple myeloma. Oncotarget, 2017, 8, 27854-27867.	1.8	25
186	Identification of PIKfyve kinase as a target in multiple myeloma. Haematologica, 2020, 105, 1641-1649.	3.5	25
187	Tumoricidal Effects of Macrophage-Activating Immunotherapy in a Murine Model of Relapsed/Refractory Multiple Myeloma. Cancer Immunology Research, 2015, 3, 881-890.	3.4	24
188	Chromogranin A ls Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.9	24
189	Monosomic Loss of MIR15A/MIR16-1 Is a Driver of Multiple Myeloma Proliferation and Disease Progression. Blood Cancer Discovery, 2020, 1, 68-81.	5.0	24
190	The Blood B-Cells and Borie Marrow Plasma Cells in Patients with Multiple Myeloma Share Identical IgH Rearrangements. Current Topics in Microbiology and Immunology, 1995, 194, 17-24.	1.1	24
191	Perspectives on the Risk-Stratified Treatment of Multiple Myeloma. Blood Cancer Discovery, 2022, 3, 273-284.	5.0	24
192	Sequence and expression of murine cDNAs encoding Xlr3a and Xlr3b, defining a new X-linked lymphocyte-regulated Xlr gene subfamily. Gene, 1994, 150, 345-350.	2.2	22
193	Oncolytic immunotherapy and bortezomib synergy improves survival of refractory multiple myeloma in a preclinical model. Blood Advances, 2019, 3, 797-812.	5.2	22
194	The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma. Nature Communications, 2022, 13, .	12.8	22
195	Expression of <i>Nras Q61R</i> and <i>MYC</i> transgene in germinal center B cells induces a highly malignant multiple myeloma in mice. Blood, 2021, 137, 61-74.	1.4	21
196	"Direct to Drug―screening as a precision medicine tool in multiple myeloma. Blood Cancer Journal, 2020, 10, 54.	6.2	20
197	Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight, 2019, 4, .	5.0	20
198	Diagnostic evaluation of t(4;14) in multiple myeloma and evidence for clonal evolution. Leukemia, 2007. 21. 2358-2359.	7.2	18

#	Article	IF	CITATIONS
199	Phase 1/2 trial of ixazomib, cyclophosphamide and dexamethasone in patients with previously untreated symptomatic multiple myeloma. Blood Cancer Journal, 2018, 8, 70.	6.2	18
200	Effect of Tissue Shipping on Plasma Cell Isolation, Viability, and RNA Integrity in the Context of a Centralized Good Laboratory Practice–Certified Tissue Banking Facility. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 666-673.	2.5	17
201	Longâ€term followâ€up of a phase 2 trial of single agent lenalidomide in previously untreated patients with chronic lymphocytic leukaemia. British Journal of Haematology, 2014, 165, 731-733.	2.5	17
202	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. , 2016, 4, 90.		17
203	Induction of iron excess restricts malignant plasma cells expansion and potentiates bortezomib effect in models of multiple myeloma. Leukemia, 2017, 31, 967-970.	7.2	17
204	Inflation of tumor mutation burden by tumor-only sequencing in under-represented groups. Npj Precision Oncology, 2021, 5, 22.	5.4	17
205	Expression and mutation status of candidate kinases in multiple myeloma. Leukemia, 2007, 21, 1124-1127.	7.2	15
206	A kinder, gentler way: control of the proliferative tumor compartment, not cosmetic complete response, should be the goal of myeloma therapy. Leukemia, 2008, 22, 673-675.	7.2	15
207	Systolic dysfunction associated with carfilzomib use in patients with multiple myeloma. Blood Cancer Journal, 2017, 7, 642.	6.2	15
208	Sequence and expression of a murine cDNA encoding PC326, a novel gene expressed in plasmacytomas but not normal plasma cells. Oncogene, 1992, 7, 2059-64.	5.9	15
209	Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers. Leukemia Research, 2014, 38, 948-954.	0.8	14
210	The Prognostic Role of <i>MYC</i> Structural Variants Identified by NGS and FISH in Multiple Myeloma. Clinical Cancer Research, 2021, 27, 5430-5439.	7.0	14
211	Dysregulation of c-myc in Multiple Myeloma. Current Topics in Microbiology and Immunology, 1997, 224, 277-282.	1.1	14
212	Title is missing!. Annals of Oncology, 2000, 11, 131-135.	1.2	14
213	Pomalidomide–dexamethasone in refractory multiple myeloma: long-term follow-up of a multi-cohort phase II clinical trial. Leukemia, 2018, 32, 719-728.	7.2	13
214	Identification of Three Novel Chromosomal Translocation Partners Involving the Immunoglobulin Loci in Newly Diagnosed Myeloma and Human Myeloma Cell Lines Blood, 2005, 106, 1552-1552.	1.4	13
215	A Phase I/II Trial Of Cyclophosphamide, Carfilzomib, Thalidomide and Dexamethasone (CYCLONE) In Patients With Newly Diagnosed Multiple Myeloma: Final Results Of MTD Expansion Cohort. Blood, 2013, 122, 3179-3179.	1.4	13
216	Genes Expressed Selectively in Plasmacytomas: Markers of Differentiation and Transformation. Current Topics in Microbiology and Immunology, 1992, 182, 223-228.	1.1	12

#	Article	IF	CITATIONS
217	A Phase I Study of the Safety and Pharmacokinetics of Escalating Doses of MFGR1877S, a Fibroblast Growth Factor Receptor 3 (FGFR3) Antibody, in Patients with Relapsed or Refractory t(4;14)-Positive Multiple Myeloma. Blood, 2012, 120, 4029-4029.	1.4	12
218	Lenalidomide Maintenance Therapy In Multiple Myeloma: A Meta-Analysis Of Randomized Trials. Blood, 2013, 122, 407-407.	1.4	12
219	Longitudinal single-cell analysis of a myeloma mouse model identifies subclonal molecular programs associated with progression. Nature Communications, 2021, 12, 6322.	12.8	12
220	Frequent occurrence of large duplications at reciprocal genomic rearrangement breakpoints in multiple myeloma and other tumors. Nucleic Acids Research, 2016, 44, 8189-8198.	14.5	11
221	Polyclonal serum free light chain elevation is associated with increased risk of monoclonal gammopathies. Blood Cancer Journal, 2019, 9, 49.	6.2	11
222	Cereblon Expression Predicts Response, Progression Free and Overall Survival After Pomalidomide and Dexamethasone Therapy in Multiple Myeloma. Blood, 2012, 120, 194-194.	1.4	11
223	Clinical Activity of Single Dose Systemic Oncolytic VSV Virotherapy in Patients with Relapsed Refractory T-Cell Lymphoma. Blood Advances, 2022, , .	5.2	11
224	Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes. Nature Communications, 2022, 13, .	12.8	11
225	Epigenetics and MicroRNAs Combine to Modulate the MDM2/p53 Axis in Myeloma. Cancer Cell, 2010, 18, 299-300.	16.8	10
226	Complex <i>IGH</i> rearrangements in multiple myeloma: Frequent detection discrepancies among three different probe sets. Genes Chromosomes and Cancer, 2014, 53, 467-474.	2.8	10
227	Changes in uninvolved immunoglobulins during induction therapy for newly diagnosed multiple myeloma. Blood Cancer Journal, 2017, 7, e569-e569.	6.2	8
228	Phase II Trial of Lenalidomide (Revlimidâ,,¢) with Cyclophosphamide and Dexamethasone (RCd) for Newly Diagnosed Myeloma. Blood, 2008, 112, 91-91.	1.4	8
229	Results From the Phase II Dose Expansion of Cyclophosphamide, Carfilzomib, Thalidomide and Dexamethasone (CYCLONE) in Patients with Newly Diagnosed Multiple Myeloma. Blood, 2012, 120, 445-445.	1.4	8
230	Randomized Phase 2 Trial of Two Different Doses of Ixazomib in Patients with Relapsed Multiple Myeloma Not Refractory to Bortezomib. Blood, 2015, 126, 3050-3050.	1.4	8
231	Survival of genetic subtypes of relapsed myeloma may be modulated by secondary events. Blood, 2007, 109, 3610-3611.	1.4	7
232	Comprehensive Identification of Somatic Mutations inÂChronic Lymphocytic Leukemia. Cancer Cell, 2011, 20, 5-7.	16.8	7
233	Treatment With Bortezomib-based Therapy, Followed by Autologous Stem Cell Transplantation, Improves Outcomes in Light Chain Amyloidosis: A Retrospective Study. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 486-492.e1.	0.4	7
234	Phase II Trial of Lenalidomide, Cyclophosphamide, and Dexamethasone (CRd) for Newly Diagnosed Myeloma Blood, 2007, 110, 190-190.	1.4	7

#	Article	IF	CITATIONS
235	Selective expression of one c-myc allele in two human myeloma cell lines. Cancer Research, 1996, 56, 4370-3.	0.9	7
236	Individualizing Therapy Using Molecular Markers in Multiple Myeloma. Clinical Lymphoma and Myeloma, 2007, 7, S170-S174.	1.4	6
237	Phase II trial of nabâ€paclitaxel in patients with relapsed or refractory multiple myeloma. American Journal of Hematology, 2016, 91, E504-E505.	4.1	6
238	The Comprehensive Genomic Characterization Of All Commercially and Non-Commercially Available Multiple Myeloma Cell Lines. Blood, 2013, 122, 1914-1914.	1.4	6
239	Efficacy of induction with cybord in newly diagnosed multiple myeloma. Journal of Clinical Oncology, 2008, 26, 8517-8517.	1.6	6
240	Review of Multiple Myeloma Genetics including Effects on Prognosis, Response to Treatment, and Diagnostic Workup. Life, 2022, 12, 812.	2.4	6
241	Unique characteristics and outcomes of therapy-related acute lymphoblastic leukemia following treatment for multiple myeloma. Blood Cancer Journal, 2022, 12, .	6.2	6
242	Maintained rules of development in a mouse B-cell tumor. Leukemia, 2005, 19, 1278-1280.	7.2	5
243	Phase I/II study of melphalan, prednisone and lenalidomide combination for patients with newly diagnosed multiple myeloma who are not candidates for stem cell transplantation. Blood Cancer Journal, 2015, 5, e294-e294.	6.2	5
244	Promiscuous mechanisms underlie the antitumor effects of thalidomide analogs. Nature Medicine, 2016, 22, 706-707.	30.7	5
245	A phase 2 study of rituximab, cyclophosphamide, bortezomib and dexamethasone (R-CyBorD) in relapsed low grade and mantle cell lymphoma. Leukemia and Lymphoma, 2018, 59, 2128-2134.	1.3	5
246	Phase 1/2 trial of ixazomib, cyclophosphamide, and dexamethasone for newly diagnosed multiple myeloma (NDMM) Journal of Clinical Oncology, 2016, 34, 8002-8002.	1.6	5
247	Promiscuous Structural Variants Drive Myeloma Initiation and Progression. Blood Cancer Discovery, 2020, 1, 221-223.	5.0	5
248	Chemotherapy of multiple myeloma: Melphalan—40 years old and still going strong. Biology of Blood and Marrow Transplantation, 2003, 9, 2-3.	2.0	4
249	Degree of focal immunoglobulin heavy chain locus deletion as a measure of B-cell tumor purity. Leukemia, 2013, 27, 2067-2068.	7.2	4
250	Prediction of immunomodulatory drugs (IMiDs) sensitivity in myeloma via determination of baseline anti-oxidative stress capacity. Leukemia, 2020, 34, 3060-3063.	7.2	4
251	The CCND1 c.870G risk allele is enriched in individuals of African ancestry with plasma cell dyscrasias. Blood Cancer Journal, 2020, 10, 39.	6.2	4
252	Phase 2 Trial of Ixazomib, Cyclophosphamide and Dexamethasone for Treatment of Previously Untreated Light Chain Amyloidosis. Blood, 2020, 136, 52-53.	1.4	4

#	Article	lF	CITATIONS
253	Comprehensive Genome-Wide Profile of Regional Gains and Losses in Multiple Myeloma Using Array-CGH: The 1q21 Amplification and Potential Role of the BCL-9 Gene in Multiple Myeloma Pathogenesis Blood, 2004, 104, 785-785.	1.4	4
254	A Phase II Trial of Myeloma Induction Therapy with Cyclophosphamide, Bortezomib, and Dexamethasone (Cybor-D): Improved Response over Historical Lenalidomide-Dexamethasone Controls Blood, 2007, 110, 3601-3601.	1.4	4
255	Identification of Novel Therapeutic Targets in the Clinically Predictive Vk*MYC Mouse Model of Multiple Myeloma. Blood, 2014, 124, 415-415.	1.4	4
256	Characterization of the Role of Regulatory T Cells (Tregs) in Inducing Progression of Multiple Myeloma. Blood, 2015, 126, 502-502.	1.4	4
257	Reversible Cardiotoxicity Associated with Carfilzomib Use in Patients with Multiple Myeloma. Blood, 2016, 128, 2126-2126.	1.4	4
258	Syk to death. Blood, 2009, 113, 2371-2371.	1.4	3
259	The 2020 BMT CTN Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma. Transplantation and Cellular Therapy, 2021, 27, 807-816.	1.2	3
260	Aneuploidy Is Associated with Inferior Survival in Relapsed Refractory Multiple Myeloma Patients. Blood, 2019, 134, 4360-4360.	1.4	3
261	Survival of Genetic Subtypes of Relapsed Myeloma May Be Modulated by Secondary Events Blood, 2006, 108, 132-132.	1.4	3
262	A Simple and Reliable Method To Verify the Authenticity and Purity of Human Myeloma Cell Lines Blood, 2007, 110, 2485-2485.	1.4	3
263	Survival in Patients with Newly Diagnosed Myeloma Undergoing Therapy with Lenalidomide and Dexamethasone: Impact of High-Risk Cytogenetic Risk Status on Outcome. Blood, 2008, 112, 95-95.	1.4	3
264	Repair Of DNA Double Strand Breaks By Insertion Of Nucleotide Sequences Derived From Distant Regions Of The Genome. Blood, 2013, 122, 1243-1243.	1.4	3
265	Identification of Consensus Genes Expressed in Plasmacytomas but Not B Lymphomas. Current Topics in Microbiology and Immunology, 1990, 166, 141-147.	1.1	3
266	Genes Expressed Selectively in Murine and Human Plasma Cell Neoplasms. Current Topics in Microbiology and Immunology, 1995, 194, 57-61.	1.1	3
267	Transcriptional Plasticity Compensates for Ikaros and Aiolos Proteasomal Degradation and Mediates Resistance to IMiDs in Multiple Myeloma (MM). Blood, 2017, 130, 63-63.	1.4	3
268	Mice Expressing MYC and NrasQ61R in Germinal Center B Cells Develop Highly Aggressive Multiple Myeloma. Blood, 2018, 132, 1006-1006.	1.4	3
269	Single-Cell Proteomics and Tumor RNAseq Identify Novel Pathways Associated With Clofazimine Sensitivity in PI- and IMiD- Resistant Myeloma, and Putative Stem-Like Cells. Frontiers in Oncology, 2022, 12, .	2.8	3
270	Phase 2 trial of ixazomib, cyclophosphamide, and dexamethasone for previously untreated light chain amyloidosis. Blood Advances, 2022, 6, 5429-5435.	5.2	3

#	Article	IF	CITATIONS
271	TRAF3 in B cells: too much, too little, too bad. Blood, 2009, 113, 4481-4482.	1.4	2
272	Impressions of the myeloma landscape. Blood, 2010, 116, 2403-2404.	1.4	2
273	Importin-Î ² and exportin-5 are strong biomarkers of productive reoviral infection of cancer cells. Annals of Diagnostic Pathology, 2018, 32, 28-34.	1.3	2
274	Detailing the genomic landscape of myeloma. Blood, 2018, 132, 554-555.	1.4	2
275	A Single-Cell Transcriptional Analysis of Tumour Cells and the Immune Microenvironment during Disease Evolution in a Transgenic Mouse Model of Myeloma. Blood, 2018, 132, 56-56.	1.4	2
276	Gene Expression Profiling of Myeloma Cells at Diagnosis Can Predict Response to Therapy with Thalidomide and Dexamethasone Combination Blood, 2005, 106, 508-508.	1.4	2
277	The Murine Vk*MYC Myeloma Shares Defining Genetic Lesions with Human Multiple Myeloma Blood, 2009, 114, 1808-1808.	1.4	2
278	FcRL5 as a Target of Antibody-Drug Conjugates for the Treatment of Multiple Myeloma Blood, 2009, 114, 3836-3836.	1.4	2
279	The Vk*MYC Mouse Model of Myeloma Identifies Successful Combination Therapies for the Treatment of Bortezomib Refractory Myeloma Patients. Blood, 2010, 116, 3015-3015.	1.4	2
280	Long-Term Follow-up of a Phase 2 Study of Single Agent Lenalidomide in Previously Untreated, Symptomatic Chronic Lymphocytic Leukemia (CLL). Blood, 2012, 120, 718-718.	1.4	2
281	IAP Antagonists Are a Novel Class Of Immunomodulators That Induce Complete Response In Vk*MYC Myeloma By Stimulating Plasmacytoid Dendritic Cells To Secrete IFNa. Blood, 2013, 122, 128-128.	1.4	2
282	Development and Results of a Multiple Myeloma Specific Custom 77-Gene Mutation Panel for Clinical Targeted Sequencing. Blood, 2014, 124, 169-169.	1.4	2
283	The Cardiovascular Impact of Carfilzomib in Multiple Myeloma. Blood, 2014, 124, 4748-4748.	1.4	2
284	Inhibition of the Epigenetic Modifier EZH2 Upregulates Cell Cycle Control Genes to Inhibit Myeloma Cell Growth and Overcome High-Risk Disease Features. Blood, 2016, 128, 3289-3289.	1.4	2
285	Genomic Variability in Multiple Myeloma (MM) Patients By Race: An Analysis of the Publically Available Mmrf Commpass Study Database. Blood, 2016, 128, 4432-4432.	1.4	2
286	Impact of lenalidomide therapy on stem cell mobilization in myeloma. Journal of Clinical Oncology, 2008, 26, 8543-8543.	1.6	2
287	High-resolution assessment of chromosomal gains and losses in multiple myeloma tumors from bortezomib clinical trial. Journal of Clinical Oncology, 2008, 26, 8570-8570.	1.6	2
288	Plasma Cell Folate Receptor Overexpression Differentiates Multiple Myeloma from Monoclonal Gammopathy of Undetermined Significance and Smoldering Myeloma Blood, 2004, 104, 3649-3649.	1.4	2

#	Article	IF	CITATIONS
289	Immunoglobulin and MYC Rearrangements in Multiple Myeloma Pathogenesis. , 2015, , 139-156.		2
290	Response to COVID-19 Vaccination Post-CAR T Therapy in Patients with Non-Hodgkin Lymphoma and Multiple Myeloma. Blood, 2021, 138, 1750-1750.	1.4	2
291	Ocular Toxicity of Commercially Available Belantamab Mafodotin in Patients with Advanced Multiple Myeloma. Blood, 2021, 138, 2711-2711.	1.4	2
292	A Phase I Dose Escalation Study of PT-112 in Patients with Relapsed or Refractory Multiple Myeloma. Blood, 2020, 136, 9-10.	1.4	2
293	Transplantation of autologous bone marrow pre-loaded <i>ex vivo</i> with oncolytic myxoma virus is efficacious against drug-resistant Vk*MYC mouse myeloma. Oncotarget, 2022, 13, 490-504.	1.8	2
294	DIAGNOSIS AND GENETIC CLASSIFICATION OF MULTIPLE MYELOMA. , 0, , 1-17.		1
295	Targeting NF-κB Signaling in Multiple Myeloma. Clinical Lymphoma and Myeloma, 2009, 9, S14-S16.	1.4	1
296	Pomalidomide (CC4047) plus Low-Dose Dexamethasone (Pom/Dex) as Therapy for Relapsed Multiple Myeloma. Clinical Lymphoma and Myeloma, 2009, 9, S46-S47.	1.4	1
297	Abstract 541: Successful oncolytic virotherapy in a bortezomib resistant syngeneic mouse model of multiple myeloma: Implications for translational significance. , 2016, , .		1
298	Abstract B16: Inhibition of RNA Polymerase I transcription by CX-5461 as a therapeutic strategy for the cancer-specific activation of p53 in highly refractory haematological malignancies. , 2013, , .		1
299	Phase I Trial of Systemic Administration of Vesicular Stomatitis Virus Genetically Engineered to Express NIS and Human Interferon Beta, in Patients with Relapsed or Refractory Multiple Myeloma (MM), Acute Myeloid Leukemia (AML), and T-Cell Neoplasms (TCL). Blood, 2020, 136, 7-8.	1.4	1
300	Myeloma Cell Lines Are Not Sensitive to Modulation of Cyclin D1 Level Blood, 2004, 104, 790-790.	1.4	1
301	A Novel Transgenic Mouse Model of Multiple Myeloma Reliably Predicts Drug Response Blood, 2006, 108, 241-241.	1.4	1
302	Activation of MYC Pathway Is a Unifying Pathological Event in the Progression from Monoclonal Gammopathy of Undetermined Significance (MGUS) to Myeloma (MM) Blood, 2007, 110, 241-241.	1.4	1
303	PRL3 Is a Mediator of IL6/STAT3 Signaling and Defines a Population of Multiple Myeloma Patients Distinct from Those That Activate NFkB Blood, 2007, 110, 671-671.	1.4	1
304	Loss of p53 Is a Marker of Progression in Plasma Cell Neoplasias and Is a Negative Prognostic Factor in Relapsed Disease Blood, 2008, 112, 1663-1663.	1.4	1
305	Pomalidomide Plus Low-Dose Dexamethasone In Myeloma Refractory to Both Bortezomib and Lenalidomide: Comparison of Two Dosing Strategies In Dual-Refractory Disease. Blood, 2010, 116, 863-863.	1.4	1
306	UCHL1 Is a Biomarker of Aggressive Multiple Myeloma Required for Disease Progression. Blood, 2015, 126, 2980-2980.	1.4	1

#	Article	IF	CITATIONS
307	Ikaros-Dependent Downregulation of MYC with IMiDs in Myeloma (MM) Cells Is Mediated through the Depletion of the Acetylated Chromatin Reader BRD4 at Super-Enhancer Loci. Blood, 2015, 126, 4175-4175.	1.4	1
308	Complementary Activation of Ccnd, MYC, RAS and NFkB By Mutations in Multiple Myeloma. Blood, 2016, 128, 355-355.	1.4	1
309	IKZF1 Regulates BRD4 Retention and Recruitement at Enhancer in Myeloma Cells: Role of BRD4 in IMiDs Resistance. Blood, 2016, 128, 358-358.	1.4	1
310	Cyclophosphamide, bortezomib, and dexamethasone (CYBORD) treatment for relapsed/refractory multiple myeloma Journal of Clinical Oncology, 2014, 32, 8586-8586.	1.6	1
311	Combined High Resolution Array Comparative Genomic Hybridization and Gene Expression Profiling Reveal Rb1 Haploinsufficiency as a Possibile Tumorigenic Mechanism in Myeloma Blood, 2006, 108, 113-113.	1.4	1
312	Prediction of response to bortezomib and dexamethasone resistance in myeloma (MM) by novel mutations in the NFKB pathway. Journal of Clinical Oncology, 2007, 25, 8007-8007.	1.6	1
313	Gene Expression Profiling of Pulmonary Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma Identifies New Diagnostic Markers, Biological Heterogeneity and Therapeutic Targets Blood, 2007, 110, 560-560.	1.4	1
314	Abstract 219:TP53loss: An overriding marker of disease progression in Multiple Myeloma. , 2011, , .		1
315	PARP Inhibition (OLAPARIB) Enhance Melphalan and Nutlin-3a Sensitivity in TP53 Positive Multiple Myeloma. Blood, 2012, 120, 1846-1846.	1.4	1
316	Promiscuous Cryptic Rearrangements of the MYC Locus Cis-Dysregulate MYC Expression and Are Present in the Majority of Patients with Hyperdiploid Myeloma. Blood, 2012, 120, 724-724.	1.4	1
317	Genome Wide Studies in Multiple Myeloma Identify XPO1/CRM-1 As a Critical Target Validated Using the Selective Inhibitor of Nuclear Export (SINE) KPT-276. Blood, 2012, 120, 573-573.	1.4	1
318	Cereblon Binding IMiD Small Molecules Mediate Myeloma Cell Death Via IRF4. Blood, 2012, 120, 1807-1807.	1.4	1
319	Abstract 5209: Characterization of an isogenic model system for KDM6A/UTX loss in multiple myeloma Cancer Research, 2013, 73, 5209-5209.	0.9	1
320	Abstract 5489: Targeting MYC in multiple myeloma by BET protein inhibition. , 2014, , .		1
321	Abstract 951: CB-5083 is a novel first in class p97 inhibitor that disrupts cellular protein homeostasis and demonstrates anti-tumor activity in solid and hematological models. Cancer Research, 2014, 74, 951-951.	0.9	1
322	Abstract 3018: Expression of oncogenic Nras and a MYC transgene in germinal center B cells induces a highly malignant multiple myeloma. , 2018, , .		1
323	A Novel Approach to Risk Stratification in Multiple Myeloma Using ISS Stage and FISH. Blood, 2019, 134, 1800-1800.	1.4	1
324	Altered Iron Metabolism Is a New Targetable Hallmark for Multiple Myeloma. Blood, 2019, 134, 3059-3059.	1.4	1

#	Article	IF	CITATIONS
325	Characterization of Atypical t(11;14) CCND1/IGH Translocations in Multiple Myeloma. Blood, 2021, 138, 3771-3771.	1.4	1
326	Improving the Definition of Response Assessment: Prognostic Value of Minimal Residual Disease Combined with PET/CT at Day 100 Post Autologous Stem Cell Transplantation in Multiple Myeloma. Blood, 2020, 136, 33-34.	1.4	1
327	Role of Aneuploidy in Transcriptional Regulation and Clinical Prognosis in Relapsed and/or Refractory Multiple Myeloma (RRMM). Blood, 2020, 136, 45-46.	1.4	1
328	Therapeutic remodeling of myeloma chromatin. Blood, 2003, 101, 3762-3762.	1.4	0
329	Constipated myeloma. Blood, 2004, 104, 602-602.	1.4	Ο
330	Need akt? Some myelomas do. Blood, 2008, 112, 3004-3005.	1.4	0
331	Reply to the research mission in myeloma by Richardson et al Leukemia, 2009, 23, 423-424.	7.2	Ο
332	Cytogenetic Abnormalities in MGUS and Myeloma. , 2013, , 589-599.		0
333	Pathogenesis of Multiple Myeloma. , 2014, , 35-46.		0
334	13. Molecular pathogenesis of multiplemyeloma. , 2016, , 245-256.		0
335	Do Cytogenetics Predict Likelihood to Attain Minimal Residual Disease (MRD) Post Autologous Stem Cell Transplantation (SCT) in Multiple Myeloma (MM)?. Biology of Blood and Marrow Transplantation, 2019, 25, S394.	2.0	0
336	Mate pair sequencing outperforms fluorescence in situ hybridization and improves diagnostic yield in the genomic characterization of multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e58.	0.4	0
337	Multipeptide stimulated PBMCs generate TEM/TCM for adoptive cell therapy in multiple myeloma. Oncotarget, 2021, 12, 2051-2067.	1.8	Ο
338	Engineered Oncogene Activation by Somatic Hypermutation Results in a Faithful Mouse Model of MGUS/Multiple Myeloma Blood, 2004, 104, 211-211.	1.4	0
339	Enforced BCL6 Expression Inhibits B Cell Development in Vivo Blood, 2004, 104, 1535-1535.	1.4	Ο
340	Sequencing the Multiple Myeloma Kinome: Absence of Mutation in Known Malignancy-Associated Kinases Blood, 2004, 104, 783-783.	1.4	0
341	Comparison of Newly Diagnosed and Relapsed Refractory Multiple Myeloma Using Transcriptional Profiling of Myeloma Cells Blood, 2005, 106, 1555-1555.	1.4	0
342	The Multiple Myeloma SET Domain (MMSET) Protein Is a Histone H3 and H4 Methyltransferase with Properties of a Transcriptional Co-Repressor Blood, 2005, 106, 358-358.	1.4	0

#	Article	IF	CITATIONS
343	High Density Oligonucleotide Array CGH Analysis of CLL Reveals Areas of Recurrent Genomic Gain or Loss Blood, 2006, 108, 2093-2093.	1.4	0
344	High Resolution Array CGH Identifies TRAF3 as a Novel Tumor Suppressor in Multiple Myeloma Blood, 2006, 108, 3407-3407.	1.4	0
345	Multiple Myeloma (MM) Is Characterized by Genomic Instability Regardless of Ploidy Categories and Degree of Karyotypic Complexity Is an Important Prognostic Factor Blood, 2007, 110, 1476-1476.	1.4	0
346	Potentiated Phospho-Protein Network Profiling of Multiple Myeloma Cell Lines and Primary Patient Samples by Multi-Parameter Flow Cytometry Blood, 2007, 110, 1505-1505.	1.4	0
347	High-Resolution Assessment of Gains and Losses of Chromosomes in Patients with Multiple Myeloma Treated with Bortezomib Blood, 2007, 110, 4763-4763.	1.4	0
348	A Novel Pan-PI3K/Akt Inhibitor, SF1126, Inhibits In Vitro Growth of Multiple Myeloma Cells Blood, 2007, 110, 4806-4806.	1.4	0
349	Identification of Survival Critical Genomic Gains or Losses in Myeloma (MM) Using Array-Comparative Genomic Hybridization (aCCH) Blood, 2007, 110, 2471-2471.	1.4	Ο
350	Biology-Based Classification and Staging of Multiple Myeloma. , 2008, , 41-56.		0
351	Comparison of Multiple Myeloma Donor Patient Samples and Derived Cell Lines Identifies a Confirmed Hyperdiploid Myeloma Cell Line and Demonstrates Remarkable Genetic Similarity Between Cell Lines and Patient Samples. Blood, 2008, 112, 2732-2732.	1.4	Ο
352	Interim Analyses of the MMRC Reference Collection Identifies Recurrent Genomic-Level Events in Multiple Myeloma and Demonstrates That CDKN2C/p18 Deletion Is the Pre-Eminent Copy Number Alteration in Poor Prognosis Disease. Blood, 2008, 112, 497-497.	1.4	0
353	Phase II Study of Melphalan, Prednisone and Lenalidomide Combination for Newly Diagnosed Multiple Myeloma Patients Who Are Not Candidates for Stem Cell Transplantation. Blood, 2008, 112, 2769-2769.	1.4	Ο
354	A Comparative Oncogenomic Analysis Identifies Genetic Events Associated with Myeloma Progression and Drug Resistance. Blood, 2008, 112, 494-494.	1.4	0
355	Rearrangements of IER3 Represent a Novel and Recurrent Molecular Abnormality in Myelodysplastic Syndromes (MDS). Blood, 2008, 112, 2679-2679.	1.4	0
356	Superiority of Lenalidomide-Dexamethasone Versus Thalidomide-Dexamethasone as Initial Therapy for Newly Diagnosed Multiple Myeloma Blood, 2009, 114, 3884-3884.	1.4	0
357	Abstract B176: Synergistic induction of apoptosis by the histoneâ€deacetylase inhibitor, Panobinostat, combined with ABTâ€737 or rhTRAIL, in multiple myeloma. , 2009, , .		Ο
358	Abstract 4957: Comparison of commercial and custom microarrays: which is the best choice for copy-number analysis in tumor samples. , 2010, , .		0
359	Abstract 4822: Analysis of somatic copy number alterations associated with poor prognosis and progression of multiple myeloma in African Americans. , 2010, , .		0
360	Analysis of Serial Patient Samples Reveals a Variety of Clonal Dynamics In Multiple Myeloma. Blood, 2010, 116, 1923-1923.	1.4	0

#	Article	IF	CITATIONS
361	Abstract 4311: Utilising the preclinical Vk*MYC model of multiple myeloma to rapidly and effectively screen novel therapies and their combinations. , 2011, , .		0
362	Generation of an automated tool for querying myeloma transcriptomics for multiple gene expression signatures used in risk-stratification Journal of Clinical Oncology, 2011, 29, 8024-8024.	1.6	0
363	Cereblon Expression Is Required for the Anti-Myeloma Activity of Lenalidomide and Pomalidomide. Blood, 2011, 118, 127-127.	1.4	0
364	Abstract A83: Modifications of the bone marrow microenvironment in the transition from monoclonal gammopathy of undetermined significance to multiple myeloma in Vk*MYC mice , 2013, , .		0
365	Dysregulation Of Cyclin D1 Or Activation Of KRAS Accelerate The Development Of Monoclonal Gammopathy and Cooperate To Cause Its Progression. Blood, 2013, 122, 3103-3103.	1.4	Ο
366	Mir-15a/16-1 Haploinsufficiency Contributes To Myeloma Progression. Blood, 2013, 122, 1850-1850.	1.4	0
367	Ikaros expression levels to predict response and survival following pomalidomide and dexamethasone in multiple myeloma (MM) Journal of Clinical Oncology, 2014, 32, 8540-8540.	1.6	0
368	Pomalidomide Plus Low-Dose Dexamethasone (Pom/Dex) in Relapsed Lenalidomide Refractory Myeloma: Long Term Follow up and Comparison of 2 Mg Vs 4 Mg Doses. Blood, 2014, 124, 4780-4780.	1.4	0
369	Pre-Clinical Activity of the Novel, First-in-Class p97 Inhibitor, CB-5083, in Multiple Myeloma. Blood, 2014, 124, 4701-4701.	1.4	0
370	Early Trafficking of Bone Marrow Derived-Endothelial Progenitor Cells Promotes Multiple Myeloma Progression. Blood, 2014, 124, 4719-4719.	1.4	0
371	Angiogenesis Associated with Alterations of the Bone Marrow Microenvironment Predicts Multiple Myeloma Progression to Symptomatic Disease in Mice and Humans. Blood, 2014, 124, 5678-5678.	1.4	Ο
372	Abstract IA25: Targeting genetic heterogeneity in multiple myeloma through immune activation , 2015, , .		0
373	Molecular Subtyping and Risk Stratification for the Classification of Myeloma. Blood, 2015, 126, 4173-4173.	1.4	0
374	Targeted Sequencing of Relapsed/Refractory Myeloma Patients Identifies an Enrichment of Mutations in Cereblon and MAPK Pathways. Blood, 2015, 126, 723-723.	1.4	0
375	Immunomodulatory Drugs Inhibit H2O2 Decomposition in Multiple Myeloma Cells and Its Mediated Cytotoxicity Is Determined By Cellular Antioxidative Capacity. Blood, 2015, 126, 2475-2475.	1.4	0
376	Anti-Tumor Phagocytic Cell Activation in Multiple Myeloma By the IAP Antagonist LCL161: Results of a Phase II Clinical Trial. Blood, 2015, 126, 3039-3039.	1.4	0
377	Abstract B155: Anti-CD137 mAb therapy of multiple myeloma. , 2016, , .		0
378	Changes in Uninvolved Immunoglobulins during Multiple Myeloma Therapy. Blood, 2016, 128, 3251-3251.	1.4	0

#	Article	IF	CITATIONS
379	The Mutational and Signaling Landscape of Multiple Myeloma Varies Dependent upon Translocation Cyclin D (TC) Subgroup. Blood, 2016, 128, 4441-4441.	1.4	Ο
380	Evaluation of Revised International Staging System for Transplant-Eligible Multiple Myeloma Patients. Blood, 2016, 128, 3452-3452.	1.4	0
381	Treatment with Bortezomib (Bor) Based Therapy Followed By Autologous Stem Cell Transplantation (SCT) Improves Outcomes in Light Chain Amyloidosis (AL). Blood, 2016, 128, 4629-4629.	1.4	0
382	Lenalidomide Inhibits Thioredoxin Reductase (TrxR) in Multiple Myeloma (MM) Cells but Direct Inhibition of Trxr and Thioredoxin (Trx) Can Bypass Requirement of Cereblon (CRBN). Blood, 2016, 128, 4482-4482.	1.4	0
383	Abstract 3135: Single-cell RNA sequencing identifies macrophage-specific expression signatures associated with phagocytosis of multiple myeloma after treatment with cIAP antagonist. , 2018, , .		Ο
384	Genomic Abnormalities Among African Individuals with Monoclonal Gammopathies Using Calculated Ancestry. Blood, 2018, 132, 4458-4458.	1.4	0
385	Reconstructing the Clonal and Mutational Architecture of Myeloma through Avian Leukosis Virus (ALV)-Mediated Genome Editing. Blood, 2018, 132, 4480-4480.	1.4	Ο
386	Abstract 4628: A clinically relevant mouse model to understand how IMiDs modulate the host-tumor immunolandscape in multiple myeloma. , 2019, , .		0
387	Integrative Analysis of FISH, Transcriptomics and Mutational Status Predicts Responsiveness to Novel Agents in Multiple Myeloma. Blood, 2019, 134, 574-574.	1.4	Ο
388	Phase 2 Trial of Ixazomib, Cyclophosphamide and Dexamethasone in Relapsed Multiple Myeloma. Blood, 2019, 134, 1904-1904.	1.4	0
389	Myeloma Cells Addicted to Glutamine for Biomass Production Are Sensitive to Lenalidomide. Blood, 2019, 134, 4410-4410.	1.4	Ο
390	The CCND1 870G Risk Allele Is Enriched in African Individuals with Plasma Cell Dyscrasias. Blood, 2019, 134, 4362-4362.	1.4	0
391	Gene Expression Profiling of Structural and Functional High-Risk Multiple Myeloma. Blood, 2019, 134, 3061-3061.	1.4	Ο
392	Abstract 5622: scRNA-seq reveals restructuring of the immune microenvironment of multiple myeloma following treatment with an IAP antagonist. , 2020, , .		0
393	Abstract 5630: Anti-BCMA bispecific tool therapy against Vk*MYC multiple myeloma is enhanced by IMiDs. , 2020, , .		Ο
394	An Analysis of Virus Amplification and Antitumor Responses in T-Cell Lymphoma Patients Treated with Voyager-V1 (VSV-IFNÎ ² -NIS). Blood, 2021, 138, 1333-1333.	1.4	0
395	Disrupting Ectopic Super-Enhancers to Treat Multiple Myeloma. Blood, 2021, 138, 1593-1593.	1.4	0
396	Genomic Profiling of Smoldering Multiple Myeloma Classifies Molecular Groups with Distinct Pathogenic Phenotypes and Clinical Outcomes. Blood, 2021, 138, 723-723.	1.4	0

#	Article	IF	CITATIONS
397	Unique Characteristics and Outcomes of Therapy-Related Acute Lymphoblastic Leukemia (trALL) Following Therapy for Multiple Myeloma (MM). Blood, 2021, 138, 2285-2285.	1.4	Ο
398	Selective Cell State in the Clonally Expanded T-Cell Compartment of Vκ*MYC Mice Responding to Treatment with Checkpoint Inhibitors. Blood, 2021, 138, 1581-1581.	1.4	0
399	Phenotypic and Functional Characterization of Multiple Myeloma By Single Cell Mass Cytometry (CyTOF). Blood, 2020, 136, 40-41.	1.4	0
400	Heterogeneity of <i>MYC</i> Abnormalities in Multiple Myeloma. Blood, 2020, 136, 2-3.	1.4	0
401	Abstract 3015: IMiDs and BET inhibitors target distinct pathways of <i>MYC</i> dysregulation by super-enhancers in multiple myeloma. , 2019, , .		Ο
402	Monosomic Loss of MIR15A/MIR16-1 Is a Driver of Multiple Myeloma Proliferation and Disease Progression. Blood Cancer Discovery, 2020, 1, 68-81.	5.0	0
403	The Molecular Biology of Multiple Myeloma. , 0, , 115-124.		0