
Sundaramurthy Jayaraman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Techno-economic and profitability analysis of extraction of patchouli oil using supercritical carbon dioxide. Journal of Cleaner Production, 2021, 297, 126661.	9.3	16
2	High energy Na-Ion capacitor employing graphitic carbon fibers from waste rubber with diglyme-based electrolyte. Chemical Engineering Journal, 2021, 426, 130892.	12.7	11
3	Optimized extraction of patchouli essential oil from Pogostemon cablin Benth. with supercritical carbon dioxide. Journal of Applied Research on Medicinal and Aromatic Plants, 2020, 19, 100272.	1.5	11
4	Mathematical modeling of mass transfer in supercritical fluid extraction of patchouli oil. Engineering Reports, 2019, 1, e12051.	1.7	9
5	From Electrodes to Electrodes: Building Highâ€Performance Liâ€Ion Capacitors and Batteries from Spent Lithiumâ€Ion Battery Carbonaceous Materials. ChemElectroChem, 2019, 6, 1407-1412.	3.4	42
6	High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. Journal of Materials Chemistry A, 2018, 6, 3242-3248.	10.3	48
7	Elongated graphitic hollow nanofibers from vegetable oil as prospective insertion host for constructing advanced high energy Li-lon capacitor and battery. Carbon, 2018, 134, 9-14.	10.3	29
8	Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 366-376.	2.9	30
9	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	12.7	90
10	Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochimica Acta, 2017, 228, 131-138.	5.2	66
11	Exploring Anatase TiO ₂ Nanofibers as New Cathode for Constructing 1.6 V Class "Rockingâ€Chair―Type Liâ€Ion Cells. Particle and Particle Systems Characterization, 2016, 33, 306-310.	2.3	13
12	Highly Stable Bonding of Thiol Monolayers to Hydrogen-Terminated Si via Supercritical Carbon Dioxide: Toward a Super Hydrophobic and Bioresistant Surface. ACS Applied Materials & Interfaces, 2016, 8, 24933-24945.	8.0	12
13	Overlithiated Li 1+x Ni 0.5 Mn 1.5 O 4 in all one dimensional architecture with conversion type α-Fe 2 O 3 : A new approach to eliminate irreversible capacity loss. Electrochimica Acta, 2016, 215, 647-651.	5.2	39
14	Single step peroxidase extraction and oxidation of highly concentrated ethanol and phenol aqueous solutions using supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 116, 209-214.	3.2	12
15	Antibacterial, electrospun nanofibers of novel poly(sulfobetaine) and poly(sulfabetaine)s. Journal of Materials Chemistry B, 2016, 4, 2731-2738.	5.8	26
16	A comprehensive study on the self-lubrication mechanisms of SU-8 composites. Tribology International, 2016, 95, 391-405.	5.9	7
17	Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. Journal of Supercritical Fluids, 2016, 107, 513-518.	3.2	24
18	Cellulose Acetate-Poly(<i>N</i> -isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability. Macromolecular Rapid Communications, 2015, 36, 1368-1373.	3.9	26

#	Article	IF	CITATIONS
19	Nanostructured spinel LiNi 0.5 Mn 1.5 O 4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy, 2015, 12, 69-75.	16.0	114
20	Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly. Thin Solid Films, 2015, 589, 238-245.	1.8	4
21	Deposition of zwitterionic polymer brushes in a dense gas medium. Journal of Colloid and Interface Science, 2015, 448, 156-162.	9.4	8
22	Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous and Mesoporous Materials, 2015, 218, 55-61.	4.4	151
23	Gold nanoparticle immobilization on ZnO nanorods via bi-functional monolayers: A facile method to tune interface properties. Surface Science, 2015, 641, 23-29.	1.9	17
24	Ultralong Durability of Porous αâ€Fe ₂ O ₃ Nanofibers in Practical Liâ€Ion Configuration with LiMn ₂ O ₄ Cathode. Advanced Science, 2015, 2, 1500050.	11.2	34
25	Unveiling the Fabrication of "Rocking-Chair―Type 3.2 and 1.2 V Class Cells Using Spinel LiNi _{0.5} Mn _{1.5} O ₄ as Cathode with Li ₄ Ti ₅ O ₁₂ . Journal of Physical Chemistry C, 2015, 119, 24332-24336.	3.1	10
26	Biomass derived palygorskite–carbon nanocomposites: Synthesis, characterisation and affinity to dye compounds. Applied Clay Science, 2015, 114, 617-626.	5.2	37
27	Application of Organophosphonic Acids by One-Step Supercritical CO ₂ on 1D and 2D Semiconductors: Toward Enhanced Electrical and Sensing Performances. ACS Applied Materials & Interfaces, 2015, 7, 14885-14895.	8.0	9
28	Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries. Chemical Communications, 2015, 51, 2225-2234.	4.1	131
29	Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. Journal of Power Sources, 2015, 274, 846-850.	7.8	97
30	The Role of Functional End Groups of Perfluoropolyether (Z-dol and Z-03) Lubricants in Augmenting the Tribology of SU-8 Composites. Tribology Letters, 2014, 56, 423-434.	2.6	10
31	Does carbon coating really improves the electrochemical performance of electrospun SnO2 anodes?. Electrochimica Acta, 2014, 121, 109-115.	5.2	45
32	Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. Journal of Materials Chemistry A, 2014, 2, 520-528.	10.3	108
33	One-step fabrication of robust and optically transparent slippery coatings. RSC Advances, 2014, 4, 55263-55270.	3.6	18
34	Exceptional performance of a high voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode in all one dimensional architectures with an anatase TiO ₂ anode by electrospinning. Nanoscale, 2014, 6, 8926.	5.6	52
35	Electrospun TiO2â^'Î^ Nanofibers as Insertion Anode for Li-Ion Battery Applications. Journal of Physical Chemistry C, 2014, 118, 16776-16781.	3.1	28
36	Enhanced luminescence and charge separation in polythiophene-grafted, gold nanoparticle-decorated, 1-D ZnO nanorods. RSC Advances, 2014, 4, 11288.	3.6	15

#	Article	IF	CITATIONS
37	Effect of La-Doping on optical bandgap and photoelectrochemical performance of hematite nanostructures. Journal of Materials Chemistry A, 2014, 2, 19290-19297.	10.3	22
38	Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy and Environmental Science, 2014, 7, 3192-3222.	30.8	271
39	Exceptional Performance of TiNb ₂ O ₇ Anode in All One-Dimensional Architecture by Electrospinning. ACS Applied Materials & Interfaces, 2014, 6, 8660-8666.	8.0	124
40	Unveiling TiNb ₂ O ₇ as an Insertion Anode for Lithium Ion Capacitors with High Energy and Power Density. ChemSusChem, 2014, 7, 1858-1863.	6.8	147
41	Morphologically Robust NiFe ₂ O ₄ Nanofibers as High Capacity Li-Ion Battery Anode Material. ACS Applied Materials & Interfaces, 2013, 5, 9957-9963.	8.0	278
42	Electrospun ZnO Nanowire Plantations in the Electron Transport Layer for High-Efficiency Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 9396-9404.	8.0	32
43	In situ application of polyelectrolytes in zinc oxide nanorod synthesis: Understanding the effects on the structural and optical characteristics. Journal of Colloid and Interface Science, 2013, 394, 13-19.	9.4	5
44	Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. Journal of Power Sources, 2013, 227, 284-290.	7.8	178
45	Superhydrophobic and antireflecting behavior of densely packed and size controlled ZnO nanorods. Journal of Alloys and Compounds, 2013, 553, 375-382.	5.5	26
46	Polythiophene–gold nanoparticle hybrid systems: Langmuir–Blodgett assembly of nanostructured films. Nanoscale, 2013, 5, 2974.	5.6	12
47	Nanostructured α-Fe2O3 platform for the electrochemical sensing of folic acid. Analyst, The, 2013, 138, 1779.	3.5	54
48	Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale, 2013, 5, 5973.	5.6	87
49	Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. Chemical Communications, 2013, 49, 6677.	4.1	90
50	Stable Organic Monolayers on Oxide-Free Silicon/Germanium in a Supercritical Medium: A New Route to Molecular Electronics. Journal of Physical Chemistry Letters, 2013, 4, 1397-1403.	4.6	18
51	A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale, 2013, 5, 10636.	5.6	68
52	Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific Reports, 2013, 3, 3002.	3.3	222
53	Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Advances, 2012, 2, 8201.	3.6	60
54	Electrospun composite nanofibers and their multifaceted applications. Journal of Materials Chemistry, 2012, 22, 12953.	6.7	267

#	Article	IF	CITATIONS
55	High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. Journal of Physical Chemistry C, 2012, 116, 18087-18092.	3.1	202
56	Free-standing electrospun carbon nanofibres—a high performance anode material for lithium-ion batteries. Journal Physics D: Applied Physics, 2012, 45, 265302.	2.8	47
57	Electrospun TiO ₂ –Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 14780-14788.	3.1	181
58	High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. RSC Advances, 2012, 2, 7983.	3.6	41
59	Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 12198.	6.7	249
60	Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process. Materials Chemistry and Physics, 2012, 133, 126-134.	4.0	10
61	Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. Journal of Solid State Chemistry, 2012, 186, 261-267.	2.9	168
62	Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution – Immersion successive ionic layer adsorption and reaction process. Journal of Colloid and Interface Science, 2011, 363, 51-58.	9.4	76
63	Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. Journal of Materials Chemistry, 2011, 21, 9784.	6.7	52
64	NANOFABRICATION BY COVALENT MOLECULAR ASSEMBLY: A PATHWAY TO ROBUST STRUCTURES. Cosmos, 2011, 07, 31-42.	0.4	1
65	Formation of polythiophene multilayers on solid surfaces by covalent molecular assembly. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 168, 45-54.	3.5	9
66	Synthesis and Controlled Growth of ZnO Nanorods Based Hybrid Device Structure by Aqueous Chemical Method. Advanced Materials Research, 2010, 123-125, 779-782.	0.3	4
67	Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter. Journal of Hazardous Materials, 2006, 137, 1560-1568.	12.4	54
68	Electrochemical Route to Alleviate Irreversible Capacity Loss from Conversion Type α-Fe ₂ O ₃ Anodes by LiVPO ₄ F Prelithiation. ACS Applied Energy Materials, 0, , .	5.1	5
69	Perspective of electrospun nanofibers in energy and environment. Biofuel Research Journal, 0, , 44-54.	13.3	39