Young-Geun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909814/publications.pdf

Version: 2024-02-01

103 papers 11,429 citations

54 h-index 29081 104 g-index

107 all docs

107 docs citations

107 times ranked 12965 citing authors

#	Article	IF	Citations
1	High-resolution electrohydrodynamic jetÂprinting. Nature Materials, 2007, 6, 782-789.	13.3	1,231
2	Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Communications, 2017, 8, 14997.	5 . 8	633
3	Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems. Chemical Reviews, 2007, 107, 1117-1160.	23.0	612
4	High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures. Nano Letters, 2013, 13, 2814-2821.	4 . 5	607
5	Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances, 2018, 4, eaap9841.	4.7	465
6	Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. ACS Nano, 2015, 9, 6394-6400.	7.3	310
7	Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nature Communications, 2018, 9, 2458.	5 . 8	303
8	Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12428-12433.	3.3	280
9	Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability. Nano Letters, 2016, 16, 471-478.	4.5	265
10	Highâ€Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks. Advanced Materials, 2015, 27, 4322-4328.	11.1	243
11	High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Science Advances, 2019, 5, eaaw2844.	4.7	215
12	Synthesis of monolithic graphene–graphite integrated electronics. Nature Materials, 2012, 11, 120-125.	13.3	208
13	Nanoscale Patterns of Oligonucleotides Formed by Electrohydrodynamic Jet Printing with Applications in Biosensing and Nanomaterials Assembly. Nano Letters, 2008, 8, 4210-4216.	4.5	205
14	Stamp Collapse in Soft Lithography. Langmuir, 2005, 21, 8058-8068.	1.6	201
15	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	2.0	185
16	Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films, 2003, 442, 194-200.	0.8	180
17	Stretchable and Transparent Electrodes using Hybrid Structures of Graphene–Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters, 2014, 14, 6322-6328.	4.5	168
18	Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nature Communications, 2017, 8, 14950.	5.8	167

#	Article	IF	CITATIONS
19	Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale, 2016, 8, 10591-10597.	2.8	156
20	Highly Transparent and Stretchable Fieldâ€Effect Transistor Sensors Using Graphene–Nanowire Hybrid Nanostructures. Advanced Materials, 2015, 27, 3292-3297.	11.1	154
21	Smart, soft contact lens for wireless immunosensing of cortisol. Science Advances, 2020, 6, eabb2891.	4.7	154
22	Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 2017, 9, e432-e432.	3.8	151
23	Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Applied Physics Letters, 2008, 92, .	1.5	133
24	Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors. Journal of Materials Chemistry C, 2013, 1, 2704.	2.7	131
25	Three-Dimensional, High-Resolution Printing of Carbon Nanotube/Liquid Metal Composites with Mechanical and Electrical Reinforcement. Nano Letters, 2019, 19, 4866-4872.	4.5	127
26	Three-Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks. Advanced Materials, 2004, 16, 1369-1373.	11.1	123
27	High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale, 2015, 7, 13410-13415.	2.8	122
28	Nanoscale, Electrified Liquid Jets for High-Resolution Printing of Charge. Nano Letters, 2010, 10, 584-591.	4.5	120
29	Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Science Advances, 2019, 5, eaay0764.	4.7	117
30	Liquid Metalâ€Based Soft Electronics for Wearable Healthcare. Advanced Healthcare Materials, 2021, 10, e2002280.	3.9	116
31	Recent Advances in Transparent Electronics with Stretchable Forms. Advanced Materials, 2019, 31, e1804690.	11.1	114
32	High Dielectric Performances of Flexible and Transparent Cellulose Hybrid Films Controlled by Multidimensional Metal Nanostructures. Advanced Materials, 2017, 29, 1700538.	11.1	106
33	Collapse of stamps for soft lithography due to interfacial adhesion. Applied Physics Letters, 2005, 86, 154106.	1.5	101
34	A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nature Biomedical Engineering, 2021, 5, 772-782.	11.6	100
35	Recent Progress in Wireless Sensors for Wearable Electronics. Sensors, 2019, 19, 4353.	2.1	99
36	In-situ Synthesis of Carbon Nanotube–Graphite Electronic Devices and Their Integrations onto Surfaces of Live Plants and Insects. Nano Letters, 2014, 14, 2647-2654.	4.5	98

3

#	Article	IF	CITATIONS
37	High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8, 17113-17121.	2.8	97
38	Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces with High Resolutions Using Electrohydrodynamics. Small, 2015, 11, 2263-2268.	5.2	90
39	Stretchable and transparent electrodes based on in-plane structures. Nanoscale, 2015, 7, 14577-14594.	2.8	86
40	Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Materials, 2016, 8, e299-e299.	3.8	83
41	Flexible electronics based on oneâ€dimensional and twoâ€dimensional hybrid nanomaterials. InformaÄnÃ- Materiály, 2020, 2, 33-56.	8.5	81
42	Mechanoluminescent, Air-Dielectric MoS ₂ Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 2020, 20, 66-74.	4.5	80
43	In Situ Deposition and Patterning of Single-Walled Carbon Nanotubes by Laminar Flow and Controlled Flocculation in Microfluidic Channels. Angewandte Chemie - International Edition, 2006, 45, 581-585.	7.2	78
44	A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. Nanoscale, 2016, 8, 3916-3922.	2.8	76
45	Biomimetic Chitin–Silk Hybrids: An Optically Transparent Structural Platform for Wearable Devices and Advanced Electronics. Advanced Functional Materials, 2018, 28, 1705480.	7.8	74
46	Metal salt-derived In–Ga–Zn–O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors. Journal of Materials Chemistry C, 2013, 1, 4236.	2.7	73
47	Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Science Advances, 2021, 7, .	4.7	71
48	Interactive Skin Display with Epidermal Stimuli Electrode. Advanced Science, 2019, 6, 1802351.	5.6	68
49	Recent Advances in Smart Contact Lenses. Advanced Materials Technologies, 2020, 5, 1900728.	3.0	67
50	Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates. Nanoscale, 2016, 8, 9504-9510.	2.8	65
51	Flexible Transparent Conductive Films with High Performance and Reliability Using Hybrid Structures of Continuous Metal Nanofiber Networks for Flexible Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20299-20305.	4.0	62
52	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ^'H Bond Activations. Angewandte Chemie - International Edition, 2017, 56, 5007-5011.	7.2	61
53	3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers. Nanoscale, 2017, 9, 5072-5084.	2.8	60
54	Research on flexible display at Ulsan National Institute of Science and Technology. Npj Flexible Electronics, $2017,1,.$	5.1	59

#	Article	IF	Citations
55	Highâ€Resolution 3D Printing for Electronics. Advanced Science, 2022, 9, e2104623.	5.6	58
56	Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20, 4872-4881.	4.5	56
57	Newly Designed Cu/Cu ₁₀ Sn ₃ Core/Shell Nanoparticles for Liquid Phase-Photonic Sintered Copper Electrodes: Large-Area, Low-Cost Transparent Flexible Electronics. Chemistry of Materials, 2016, 28, 4714-4723.	3.2	54
58	Intraocular Pressure Monitoring Following Islet Transplantation to the Anterior Chamber of the Eye. Nano Letters, 2020, 20, 1517-1525.	4.5	54
59	Humanâ€Interactive, Activeâ€Matrix Displays for Visualization of Tactile Pressures. Advanced Materials Technologies, 2019, 4, 1900082.	3.0	53
60	Direct diversification of unmasked quinazolin-4(3H)-ones through orthogonal reactivity modulation. Chemical Communications, 2017, 53, 10394-10397.	2.2	51
61	Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Research Letters, 2015, 10, 27.	3.1	47
62	Highâ€Resolution 3D Printing of Freeform, Transparent Displays in Ambient Air. Advanced Science, 2019, 6, 1901603.	5.6	47
63	Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sensors and Actuators B: Chemical, 2018, 259, 825-832.	4.0	45
64	Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy, 2019, 62, 230-238.	8.2	43
65	Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24161-24168.	4.0	42
66	Amorphous Oxide Semiconductor Transistors with Air Dielectrics for Transparent and Wearable Pressure Sensor Arrays. Advanced Materials Technologies, 2020, 5, 1900928.	3.0	42
67	Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions. Soft Robotics, 2020, 7, 564-573.	4.6	39
68	Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode. Electronic Materials Letters, 2015, 11, 906-914.	1.0	38
69	Multimodal Digital Xâ€ray Scanners with Synchronous Mapping of Tactile Pressure Distributions using Perovskites. Advanced Materials, 2021, 33, e2008539.	11.1	36
70	3D Electrodes for Bioelectronics. Advanced Materials, 2021, 33, e2005805.	11.1	35
71	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	2.8	34
72	Nanomaterial-based stretchable and transparent electrodes. Journal of Information Display, 2016, 17, 131-141.	2.1	33

#	Article	IF	CITATIONS
73	Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors, 2020, 20, 3624.	2.1	33
74	3D Heterogeneous Device Arrays for Multiplexed Sensing Platforms Using Transfer of Perovskites. Advanced Materials, 2021, 33, e2101093.	11.1	33
75	Implantation of electronic visual prosthesis for blindness restoration. Optical Materials Express, 2019, 9, 3878.	1.6	32
76	Seed-mediated synthesis of ultra-long copper nanowires and their application as transparent conducting electrodes. Applied Surface Science, 2017, 422, 731-737.	3.1	31
77	Instantaneous and Repeatable Self-Healing of Fully Metallic Electrodes at Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41497-41505.	4.0	31
78	Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Research, 2020, 13, 1347-1353.	5.8	28
79	Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material. Journal of Materials Chemistry, 2003, 13, 738-741.	6.7	27
80	Graphene-Based Wireless Environmental Gas Sensor on PET Substrate. IEEE Sensors Journal, 2016, 16, 5003-5009.	2.4	27
81	Recent progress on wearable point-of-care devices for ocular systems. Lab on A Chip, 2021, 21, 1269-1286.	3.1	27
82	Tin-doped indium oxide films for highly flexible transparent conducting electrodes. Thin Solid Films, 2016, 615, 8-12.	0.8	25
83	A Full-Visible-Spectrum Invisibility Cloak for Mesoscopic Metal Wires. Nano Letters, 2018, 18, 3865-3872.	4.5	25
84	Transferable transparent electrodes of liquid metals for bifacial perovskite solar cells and heaters. Nano Energy, 2022, 93, 106857.	8.2	24
85	Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences (Switzerland), 2021, 11, 1235.	1.3	23
86	Single-step photopatterning of diffraction. Optics Express, 2003, 11, 1144.	1.7	22
87	In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. Physical Chemistry Chemical Physics, 2013, 15, 10446.	1.3	21
88	Smart Sensing Systems Using Wearable Optoelectronics. Advanced Intelligent Systems, 2020, 2, 1900144.	3.3	19
89	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	5.8	18
90	Haze-free transparent electrodes using metal nanofibers with carbon shells for high-temperature stability. Applied Surface Science, 2019, 483, 1101-1109.	3.1	17

#	Article	IF	CITATIONS
91	Selfâ∈Healable, Recyclable Anisotropic Conductive Films of Liquid Metalâ∈Gelatin Hybrids for Soft Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	16
92	An Annulative Synthetic Strategy for Building Triphenylene Frameworks by Multiple Câ^'H Bond Activations. Angewandte Chemie, 2017, 129, 5089-5093.	1.6	14
93	Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films. Journal of Materials Research, 2003, 18, 1889-1894.	1.2	13
94	Multi-dimensional carbon nanofibers for supercapacitor electrodes. Journal of Electroceramics, 2017, 38, 43-50.	0.8	13
95	Detection of cracked teeth using a mechanoluminescence phosphor with a stretchable photodetector array. NPG Asia Materials, 2022, 14, .	3.8	11
96	Smart Contact Lenses: Recent Advances in Smart Contact Lenses (Adv. Mater. Technol. 1/2020). Advanced Materials Technologies, 2020, 5, 2070004.	3.0	10
97	A high-performance transparent moisture barrier using surface-modified nanoclay composite for OLED encapsulation. Progress in Organic Coatings, 2018, 118, 66-71.	1.9	9
98	Photopatternable and refractive-index-tunable sol–gel-derived silica–titania nanohybrid materials. Current Applied Physics, 2013, 13, 1732-1737.	1.1	8
99	Engineered Unidirectional Scattering in Metal Wire Networks for Ultrahigh Glass-Like Transparency. ACS Photonics, 2018, 5, 4270-4276.	3.2	5
100	3D Electrodes for Bioelectronics (Adv. Mater. 47/2021). Advanced Materials, 2021, 33, 2170374.	11.1	2
101	Photoinduced Low Refractive Index Patterning in a Photosensitive Hybrid Material. Materials Research Society Symposia Proceedings, 2003, 780, 371.	0.1	1
102	Monolithic graphene transistor biointerface. , 2012, 2012, 5678.		0
103	Pâ€134: Flexible Transparent Electrode Film with a Continuous Ag Nanofiber Network Embedded Structure for Flexible OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1761-1764	0.1	O