Bramley J Murton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909638/publications.pdf

Version: 2024-02-01

87723 106150 4,766 115 38 65 citations g-index h-index papers 125 125 125 4190 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of enigmatic toroidal carbonate concretions on the Rio Grande Rise (Southwestern) Tj ETQq1 1 0.7843	14.rgBT/C	verlock 10 7
2	Formation, remobilisation and alteration processes at inactive hydrothermal vents: insights from elemental analysis of Cu-(Fe-)S sulfides from TAG, Mid-Atlantic Ridge. Mineralium Deposita, 2022, 57, 1431-1448.	1.7	1
3	Spatial patterns of microbial diversity in Fe-Mn deposits and associated sediments in the Atlantic and Pacific oceans. Science of the Total Environment, 2022, , 155792.	3.9	3
4	Benthic megafauna habitats, community structure and environmental drivers at Rio Grande Rise (SW) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
5	Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts. Earth and Planetary Science Letters, 2021, 553, 116651.	1.8	4
6	Microbial Diversity of Deep-Sea Ferromanganese Crust Field in the Rio Grande Rise, Southwestern Atlantic Ocean. Microbial Ecology, 2021, 82, 344-355.	1.4	27
7	Iron, copper, and zinc isotopic fractionation in seafloor basalts and hydrothermal sulfides. Marine Geology, 2021, 436, 106491.	0.9	8
8	Controls on metal enrichment in ferromanganese crusts: Temporal changes in oceanic metal flux or phosphatisation?. Geochimica Et Cosmochimica Acta, 2021, 308, 60-74.	1.6	16
9	Growth of ferromanganese crusts on bioturbated soft substrate, Tropic Seamount, northeast Atlantic ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 175, 103586.	0.6	6
10	Selective incorporation of rare earth elements by seaweeds from Cape Mondego, western Portuguese coast. Science of the Total Environment, 2021, 795, 148860.	3.9	5
11	Ocean-Floor Sediments as a Resource of Rare Earth Elements: An Overview of Recently Studied Sites. Minerals (Basel, Switzerland), 2021, 11, 142.	0.8	22
12	A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge. Earth and Planetary Science Letters, 2020, 531, 115973.	1.8	13
13	Research is needed to inform environmental management of hydrothermally inactive and extinct polymetallic sulfide (PMS) deposits. Marine Policy, 2020, 121, 104183.	1.5	17
14	Development of a Correlated Feâ€Mn Crust Stratigraphy Using Pb and Nd Isotopes and Its Application to Paleoceanographic Reconstruction in the Atlantic. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003928.	1.3	5
15	Bacterioplankton reveal years-long retention of Atlantic deep-ocean water by the Tropic Seamount. Scientific Reports, 2020, 10, 4715.	1.6	8
16	Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Scientific Reports, 2020, 10, 5075.	1.6	58
17	Presence of biogenic magnetite in ferromanganese nodules. Environmental Microbiology Reports, 2020, 12, 288-295.	1.0	11
18	Analysis of deep-ocean sediments from the TAG hydrothermal field (MAR, $26\hat{A}^{\circ}$ N): application of short-wave infrared reflectance (SWIR) spectra for offshore geochemical exploration. Journal of Soils and Sediments, 2020, 20, 3472-3486.	1.5	4

#	Article	IF	CITATIONS
19	Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy. Marine Geology, 2020, 422, 106122.	0.9	22
20	Dispersion and Intersection of Hydrothermal Plumes in the Manus Back-Arc Basin, Western Pacific. Geofluids, 2020, 2020, 1-18.	0.3	1
21	Impact of ferromanganese ore pollution on phytoplankton CO2 fixation in the surface ocean. Marine Pollution Bulletin, 2019, 146, 1002-1006.	2.3	5
22	Volcanicâ€Tectonic Structure of the Mount Dent Oceanic Core Complex in the Ultraslow Midâ€Cayman Spreading Center Determined From Detailed Seafloor Investigation. Geochemistry, Geophysics, Geosystems, 2019, 20, 1298-1318.	1.0	8
23	Multidisciplinary Scientific Cruise to the Rio Grande Rise. Frontiers in Marine Science, 2019, 6, .	1.2	17
24	Characterization and Mapping of a Deep-Sea Sponge Ground on the Tropic Seamount (Northeast) Tj ETQq0 0 0 $^\circ$ 2019, 6, .	rgBT /Over 1.2	lock 10 Tf 50 43
25	Marine Mineral Exploration With Controlled Source Electromagnetics at the TAG Hydrothermal Field, 26°N Midâ€Atlantic Ridge. Geophysical Research Letters, 2019, 46, 5808-5816.	1.5	34
26	Improving confidence in ferromanganese crust age models: A composite geochemical approach. Chemical Geology, 2019, 513, 108-119.	1.4	30
27	Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge). Ore Geology Reviews, 2019, 107, 903-925.	1.1	56
28	Underwater Hyperspectral Imaging Using a Stationary Platform in the Trans-Atlantic Geotraverse Hydrothermal Field. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2947-2962.	2.7	22
29	Deep-Ocean Mineral Deposits: Metal Resources and Windows into Earth Processes. Elements, 2018, 14, 301-306.	0.5	68
30	Modern Seafloor Hydrothermal Systems: New Perspectives on Ancient Ore-Forming Processes. Elements, 2018, 14, 307-312.	0.5	24
31	Near-seafloor magnetic signatures unveil serpentinization dynamics at ultramafic-hosted hydrothermal sites. Geology, 2018, 46, 1055-1058.	2.0	3
32	Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals (Basel, Switzerland), 2018, 8, 488.	0.8	43
33	Marine dipole–dipole controlled source electromagnetic and coincident-loop transient electromagnetic experiments to detect seafloor massive sulphides: effects of three-dimensional bathymetry. Geophysical Journal International, 2018, 215, 2156-2171.	1.0	26
34	Insights into Extinct Seafloor Massive Sulfide Mounds at the TAG, Mid-Atlantic Ridge. Minerals (Basel,) Tj ETQq0 (0 orgBT /0	Overlock 10 T
35	Assessment of the Mineral Resource Potential of Atlantic Ferromanganese Crusts Based on Their Growth History, Microstructure, and Texture. Minerals (Basel, Switzerland), 2018, 8, 327.	0.8	27
36	The formation of goldâ€rich seafloor sulfide deposits: Evidence from the <scp>B</scp> eebe hydrothermal vent field, <scp>C</scp> ayman <scp>T</scp> rough. Geochemistry, Geophysics, Geosystems, 2017, 18, 2011-2027.	1.0	10

#	Article	IF	CITATIONS
37	Causes and Consequences of Diachronous Vâ€Shaped Ridges in the North Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 2017, 122, 8675-8708.	1.4	15
38	Architecture of <scp>N</scp> orth <scp>A</scp> tlantic contourite drifts modified by transient circulation of the <scp>I</scp> celandic mantle plume. Geochemistry, Geophysics, Geosystems, 2015, 16, 3414-3435.	1.0	22
39	Geology, sulfide geochemistry and supercritical venting at the <scp>B</scp> eebe <scp>H</scp> ydrothermal <scp>V</scp> ent <scp>F</scp> ield, <scp>C</scp> ayman <scp>T</scp> rough. Geochemistry, Geophysics, Geosystems, 2015, 16, 2661-2678.	1.0	43
40	Talc-dominated seafloor deposits reveal a new class of hydrothermal system. Nature Communications, 2015, 6, 10150.	5.8	44
41	Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121, 71-84.	0.6	26
42	Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle. Earth and Planetary Science Letters, 2015, 427, 272-285.	1.8	75
43	Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 2014, 352, 451-468.	0.9	669
44	A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nature Geoscience, 2014, 7, 914-919.	5.4	90
45	Rheology and the Fe3+–chlorine reaction in basaltic melts. Chemical Geology, 2014, 366, 24-31.	1.4	14
46	A joint geochemical–geophysical record of time-dependent mantle convection south of Iceland. Earth and Planetary Science Letters, 2014, 386, 86-97.	1.8	31
47	Mantle composition controls the development of an Oceanic Core Complex. Geochemistry, Geophysics, Geosystems, 2013, 14, 979-995.	1.0	21
48	Crustal manifestations of a hot transient pulse at $60 \hat{A}^{\circ} N$ beneath the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 2013, 363, 109-120.	1.8	17
49	Moytirra: Discovery of the first known deepâ€sea hydrothermal vent field on the slowâ€spreading Midâ€Atlantic Ridge north of the Azores. Geochemistry, Geophysics, Geosystems, 2013, 14, 4170-4184.	1.0	32
50	Introducing Geology: A Guide to the World of Rocks. Underwater Technology, 2013, 31, 155-155.	0.3	0
51	Seafloor mining: the future or just another pipe dream?. Underwater Technology, 2013, 31, 53-54.	0.3	4
52	Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nature Communications, 2012, 3, 620.	5.8	162
53	Eruptive hummocks: Building blocks of the upper ocean crust. Geology, 2012, 40, 91-94.	2.0	47
54	Lower bathyal and abyssal distribution of coral in the axial volcanic ridge of the Mid-Atlantic Ridge at 45°N. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 62, 32-39.	0.6	18

#	Article	IF	CITATIONS
55	Helium isotope variations between Réunion Island and the Central Indian Ridge (17°–21°S): New evidence for ridge–hot spot interaction. Journal of Geophysical Research, 2011, 116, .	3.3	60
56	Hydrothermal vents at 5000m on the Mid-Cayman Rise: Where basement lithology and depth of venting controls sulphide deposit composition. , $2011, , .$		0
57	Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, 45°N. Earth and Planetary Science Letters, 2010, 299, 228-241.	1.8	64
58	Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage. Journal of Geophysical Research, 2010, 115, .	3.3	22
59	Diversity of hydrothermal systems on slow spreading ocean ridges: Introduction. Geophysical Monograph Series, 2010, , 1-3.	0.1	1
60	Hydrothermal circulation at slow spreading ridges: Analysis of heat sources and heat transfer processes. Geophysical Monograph Series, 2010, , 11-26.	0.1	11
61	The magnetic signature of hydrothermal systems in slow spreading environments. Geophysical Monograph Series, 2010, , 43-66.	0.1	47
62	Implications of the Iceland Deep Drilling Project for improving understanding of hydrothermal processes at slow spreading mid-ocean ridges. Geophysical Monograph Series, 2010, , 91-112.	0.1	4
63	Crustal structure, magma chamber, and faulting beneath the Lucky Strike Hydrothermal Vent Field. Geophysical Monograph Series, 2010, , 113-132.	0.1	11
64	The relationships between volcanism, tectonism, and hydrothermal activity on the Southern Equatorial Mid-Atlantic Ridge. Geophysical Monograph Series, 2010, , 133-152.	0.1	9
65	The ultraslow spreading Southwest Indian Ridge. Geophysical Monograph Series, 2010, , 153-173.	0.1	48
66	Deformation and alteration associated with oceanic and continental detachment fault systems: Are they similar?. Geophysical Monograph Series, 2010, , 175-205.	0.1	17
67	Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. Geophysical Monograph Series, 2010, , 207-239.	0.1	29
68	Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. Geophysical Monograph Series, 2010, , 241-264.	0.1	83
69	High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Geophysical Monograph Series, 2010, , 265-296.	0.1	98
70	Phase equilibria controls on the chemistry of vent fluids from hydrothermal systems on slow spreading ridges: Reactivity of plagioclase and olivine solid solutions and the pH-silica connection. Geophysical Monograph Series, 2010, , 297-320.	0.1	4
71	Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Geophysical Monograph Series, 2010, , 321-367.	0.1	89
72	Chemosynthetic communities and biogeochemical energy pathways along the Mid-Atlantic Ridge: The case of Bathymodiolus azoricus. Geophysical Monograph Series, 2010, , 409-429.	0.1	14

#	Article	IF	Citations
73	Hydrothermal activity at the Arctic mid-ocean ridges. Geophysical Monograph Series, 2010, , 67-89.	0.1	52
74	An integrated kinematic and geochemical model to determine lithospheric extension and mantle temperature from syn-rift volcanic compositions. Earth and Planetary Science Letters, 2009, 278, 26-39.	1.8	6
75	Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 2009, 287, 333-344.	1.8	244
76	Editor's comments on book review by Andrew C. Kerr and the reply to that review by Gillian R. Foulger, Donna M. Jurdy (eds). Marine Geophysical Researches, 2008, 29, 221-221.	0.5	0
77	Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4–5°S. Earth and Planetary Science Letters, 2008, 273, 332-344.	1.8	72
78	Variations in Melt Productivity and Melting Conditions along SWIR (70°E–49°E): Evidence from Olivine-hosted and Plagioclase-hosted Melt Inclusions. Journal of Petrology, 2007, 48, 1471-1494.	1.1	31
79	Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	36
80	Low \hat{l} 180 in the Icelandic mantle and its origins: Evidence from Reykjanes Ridge and Icelandic lavas. Geochimica Et Cosmochimica Acta, 2006, 70, 993-1019.	1.6	73
81	Heterogeneity in southern Central Indian Ridge MORB: Implications for ridge-hot spot interaction. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	46
82	Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochimica Et Cosmochimica Acta, 2004, 68, 361-386.	1.6	178
83	Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz. Marine Geology, 2003, 195, 223-236.	0.9	52
84	Plume-Ridge Interaction: a Geochemical Perspective from the Reykjanes Ridge. Journal of Petrology, 2002, 43, 1987-2012.	1.1	84
85	238U–230Th constraints on mantle upwelling and plume–ridge interaction along the Reykjanes Ridge. Earth and Planetary Science Letters, 2001, 187, 259-272.	1.8	53
86	A global review of non-living resources on the extended continental shelf. Revista Brasileira De Geofisica, 2000, 18, 281.	0.2	7
87	Title is missing!. Marine Geophysical Researches, 2000, 21, 87-119.	0.5	30
88	Controls on magmatic degassing along the Reykjanes Ridge with implications for the helium paradox. Earth and Planetary Science Letters, 2000, 183, 43-50.	1.8	84
89	Oceanographic evidence for a transient geothermal event affecting the Mid-Atlantic Ridge. Geophysical Research Letters, 2000, 27, 1507-1510.	1.5	3
90	Sources and fluxes of hydrothermal heat, chemicals and biology within a segment of the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 1999, 171, 301-317.	1.8	36

#	Article	IF	Citations
91	Glacioisostacy controls chemical and isotopic characteristics of tholeiites from the Reykjanes Peninsula, SW Iceland. Earth and Planetary Science Letters, 1998, 164, 1-5.	1.8	47
92	Crustal Processes: Major Controls on Reykjanes Peninsula Lava Chemistry, SW Iceland. Journal of Petrology, 1998, 39, 819-839.	1.1	64
93	Spatial and interannual variation in the faunal distribution at Broken Spur vent field (29°N,) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
94	Bathymetry of the Reykjanes Ridge. Marine Geophysical Researches, 1997, 19, 55-64.	0.5	36
95	Bathymetric segmentation and faulting on the Mid-Atlantic Ridge, 24°00′N to 24°40′N. Geological Society Special Publication, 1996, 118, 49-60.	0.8	7
96	Hydrothermal activity and ridge segmentation on the Mid-Atlantic Ridge: a tale of two hot-spots?. Geological Society Special Publication, 1996, 118, 169-184.	0.8	7
97	Extensional faulting and segmentation of the Mid-Atlantic Ridge north of the Kane Fracture Zone (24ï½½) Tj ETQo	q1_1_0.784 0.5	1314 rgBT /C
98	Mineralogy and sulphur isotope geochemistry of the Broken Spur sulphides, 29°N, Mid-Atlantic Ridge. Geological Society Special Publication, 1995, 87, 175-189.	0.8	26
99	Petrographic and geochemical variation along the Reykjanes Ridge, 57°N–59°N. Journal of the Geological Society, 1995, 152, 1031-1037.	0.9	18
100	On the sense of slip of the Southern Troodos transform fault zone, Cyprus. Geology, 1995, 23, 257.	2.0	27
101	Geological setting and ecology of the Broken Spur hydrothermal vent field: 29°10′N on the Mid-Atlantic Ridge. Geological Society Special Publication, 1995, 87, 33-41.	0.8	24
102	Direct evidence for the distribution and occurrence of hydrothermal activity between 27°N–30°N on the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 1994, 125, 119-128.	1.8	71
103	Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. Geological Society Special Publication, 1994, 81, 53-75.	0.8	119
104	Segmentation, volcanism and deformation of oblique spreading centres: A quantitative study of the Reykjanes Ridge. Tectonophysics, 1993, 222, 237-257.	0.9	69
105	En echelon axial volcanic ridges at the Reykjanes Ridge: a life cycle of volcanism and tectonics. Earth and Planetary Science Letters, 1993, 117, 73-87.	1.8	113
106	Structure and tectonic evolution of the Southern Troodos Transform Fault Zone, Cyprus. Geological Society Special Publication, 1993, 76, 141-176.	0.8	24
107	Ophiolites and their modern oceanic analogues. Geological Society Special Publication, 1992, 60, 1-2.	0.8	20
108	Chemical transects across intra-oceanic arcs: implications for the tectonic setting of ophiolites. Geological Society Special Publication, 1992, 60, 117-132.	0.8	24

#	Article	IF	CITATIONS
109	Origin and distribution of components in boninite genesis: significance of the OIB component. Geological Society Special Publication, 1992, 60, 133-154.	0.8	17
110	Multisensor, deep-towed instrument explores the ocean floor. Eos, 1992, 73, 225-225.	0.1	31
111	Hydrothermal supermounds. Nature, 1992, 358, 629-629.	13.7	1
112	Role of ridge jumps and ridge propagation in the tectonic evolution of the Lau back-arc basin, southwest Pacific. Geology, 1990, 18, 470.	2.0	115
113	Tectonic controls on boninite genesis. Geological Society Special Publication, 1989, 42, 347-377.	0.8	41
114	Western Limassol Forest complex, Cyprus: Part of an Upper Cretaceous leaky transform fault. Geology, 1986, 14, 255.	2.0	31
115	Anomalous oceanic lithosphere formed in a leaky transform fault: evidence from the Western Limassol Forest Complex, Cyprus. Journal of the Geological Society, 1986, 143, 845-854.	0.9	51