Guoqiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Research, 2017, 211, 137-146.	2.3	117
2	Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Research, 2017, 212, 126-134.	2.3	90
3	Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. Crop Journal, 2019, 7, 322-334.	2.3	47
4	Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency. Agricultural Water Management, 2021, 254, 106938.	2.4	27
5	Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agricultural Water Management, 2021, 247, 106726.	2.4	26
6	Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food and Energy Security, 2021, 10, e312.	2.0	22
7	Optimizing planting density to improve nitrogen use of super highâ€yield maize. Agronomy Journal, 2020, 112, 4147-4158.	0.9	19
8	Nitrogen Split Application Can Improve the Stalk Lodging Resistance of Maize Planted at High Density. Agriculture (Switzerland), 2020, 10, 364.	1.4	15
9	Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security, 2022, 11, .	2.0	15
10	Improvement in Photosynthetic Rate and Grain Yield in Super-High-Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch Drip Irrigation. Agronomy, 2020, 10, 1778.	1.3	14
11	Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration. Agriculture (Switzerland), 2021, 11, 313.	1.4	11
12	Effects of Nitrogen Fertilizer Management on Stalk Lodging Resistance Traits in Summer Maize. Agriculture (Switzerland), 2022, 12, 162.	1.4	7
13	Marginal superiority of maize: an indicator for density tolerance under high plant density. Scientific Reports, 2020, 10, 15378.	1.6	5
14	Weak border effects and great uniformity increase yield of maize (Zea mays) under dense population. Crop and Pasture Science, 2020, 71, 653.	0.7	5
15	Nitrogen Application and Dense Planting to Obtain High Yields from Maize. Agronomy, 2022, 12, 1308.	1.3	5
16	Optimizing row spacing increased radiation use efficiency and yield of maize. Agronomy Journal, 0, , .	0.9	3