Peter R Wich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909596/publications.pdf

Version: 2024-02-01

304368 329751 1,482 48 22 37 citations h-index g-index papers 56 56 56 2133 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Treatment of chronic airway diseases using nutraceuticals: Mechanistic insight. Critical Reviews in Food Science and Nutrition, 2022, 62, 7576-7590.	5.4	9
2	Nanoparticulate strategies for theÂdelivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine, 2022, 17, 181-195.	1.7	10
3	Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells. Antioxidants, 2022, 11, 873.	2.2	24
4	Co-encapsulation of l-asparaginase and etoposide in dextran nanoparticles for synergistic effect in chronic myeloid leukemia cells. International Journal of Pharmaceutics, 2022, 622, 121796.	2.6	8
5	Versatility of acetalated dextran in nanocarriers targeting respiratory diseases. Materials Letters, 2022, 323, 132600.	1.3	7
6	Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 31, 102303.	1.7	16
7	Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. Journal of Controlled Release, 2021, 337, 629-644.	4.8	21
8	Can dextran-based nanoparticles mitigate inflammatory lung diseases?. Future Medicinal Chemistry, 2021, 13, 2027-2031.	1.1	4
9	pH-Responsive protein nanoparticlesviaconjugation of degradable PEG to the surface of cytochromec. Polymer Chemistry, 2020, 11, 551-559.	1.9	14
10	Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chemico-Biological Interactions, 2020, 325, 109125.	1.7	40
11	Metal-organic frameworks as protective matrices for peptide therapeutics. Journal of Colloid and Interface Science, 2020, 576, 356-363.	5.0	15
12	Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology, 2020, 28, 795-817.	1.9	65
13	Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of <i>Staphylococcus aureus</i> Sortase A. ChemMedChem, 2020, 15, 839-850.	1.6	24
14	miRNA nanotherapeutics: potential and challenges in respiratory disorders. Future Medicinal Chemistry, 2020, 12, 987-990.	1.1	17
15	Detailed algal extracellular carbohydrate-protein characterisation lends insight into algal solid-liquid separation process outcomes. Water Research, 2020, 178, 115833.	5. 3	27
16	Double stimuli-responsive polysaccharide block copolymers as <i>green</i> macrosurfactants for near-infrared photodynamic therapy. Soft Matter, 2019, 15, 1423-1434.	1.2	18
17	Xylochemical Synthesis of Cytotoxic 2-Aminophenoxazinone-Type Natural Products Through Oxidative Cross Coupling. ACS Sustainable Chemistry and Engineering, 2019, 7, 4414-4419.	3.2	24
18	Receptor-mediated Uptake of Folic Acid-functionalized Dextran Nanoparticles for Applications in Photodynamic Therapy. Polymers, 2019, 11, 896.	2.0	24

#	Article	IF	CITATIONS
19	FCI Literature Prize: T. Schirmeister, C. Schmuck, P.â€R. Wich / Foundation for Polish Science Award: D.â€T. Gryko / Heinz Award: J.â€M. DeSimone. Angewandte Chemie - International Edition, 2018, 57, 1745-1745.	7.2	2
20	Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. Journal of Controlled Release, 2018, 289, 23-34.	4.8	33
21	Proteinâ€Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity. Macromolecular Rapid Communications, 2018, 39, e1800186.	2.0	19
22	Surface Modification of Polysaccharide-Based Nanoparticles with PEG and Dextran and the Effects on Immune Cell Binding and Stimulatory Characteristics. Molecular Pharmaceutics, 2017, 14, 4403-4416.	2.3	40
23	Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles. Biomacromolecules, 2017, 18, 2839-2848.	2.6	45
24	Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs). Journal of Medicinal Chemistry, 2017, 60, 6911-6923.	2.9	46
25	Nanoparticle Assembly of Surface-Modified Proteins. Journal of the American Chemical Society, 2016, 138, 14820-14823.	6.6	31
26	Methods of protein surface PEGylation under structure preservation for the emulsion-based formation of stable nanoparticles. MedChemComm, 2016, 7, 1738-1744.	3.5	12
27	Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine, 2016, 11, 2663-2677.	1.7	50
28	Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors. Journal of the American Chemical Society, 2016, 138, 8332-8335.	6.6	69
29	A new approach to inhibit human \hat{l}^2 -tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms. Organic and Biomolecular Chemistry, 2013, 11, 1631.	1.5	21
30	Degradable Dextran Particles for Gene Delivery Applications. Australian Journal of Chemistry, 2012, 65, 15.	0.5	18
31	Polyphosphonium Polymers for siRNA Delivery: An Efficient and Nontoxic Alternative to Polyammonium Carriers. Journal of the American Chemical Society, 2012, 134, 1902-1905.	6.6	122
32	Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes. Molecular Pharmaceutics, 2012, 9, 3012-3022.	2.3	49
33	Conjugation Chemistry through Acetals toward a Dextran-Based Delivery System for Controlled Release of siRNA. Journal of the American Chemical Society, 2012, 134, 15840-15848.	6.6	82
34	Acid-Degradable Cationic Dextran Particles for the Delivery of siRNA Therapeutics. Bioconjugate Chemistry, 2011, 22, 1056-1065.	1.8	142
35	Reversible and Noncompetitive Inhibition of βâ€Tryptase by Protein Surface Binding of Tetravalent Peptide Ligands Identified from a Combinatorial Split–Mix Library. Angewandte Chemie - International Edition, 2010, 49, 4113-4116.	7.2	26
36	Quantitative UV RR Spectroscopy of Artificial Peptide Receptors. , 2010, , .		0

#	Article	IF	CITATIONS
37	Site-specific pKa determination of the carboxylate-binding subunit in artificial peptide receptors. Chemical Communications, 2010, 46, 2133.	2.2	17
38	A Facile and Efficient Multiâ€Gram Synthesis of <i>N</i> àâ€Protected 5â€(Guanidinocarbonyl)â€1 <i>H</i> àâ€pyrroleâ€2â€carboxylic Acids. European Journal of Organic Chemistry, 2008, 2008, 324-329.	1,2	43
39	Characterization of guanidiniocarbonyl pyrroles in water by pH-dependent UV Raman spectroscopy and component analysis. Physical Chemistry Chemical Physics, 2008, 10, 6770.	1.3	16
40	UV resonance Raman spectroscopic monitoring of supramolecular complex formation: peptide recognition in aqueous solution. Physical Chemistry Chemical Physics, 2007, 9, 4598.	1.3	20
41	The Development of Artificial Receptors for Small Peptides Using Combinatorial Approaches. , 2007, , 3-30.		20
42	Direct and Label-Free Detection of Solid-Phase-Bound Compounds by Using Surface-Enhanced Raman Scattering Microspectroscopy. Angewandte Chemie - International Edition, 2007, 46, 4786-4789.	7.2	42
43	Combinatorial receptor finding—large and random vs. small and focused libraries. New Journal of Chemistry, 2006, 30, 1377-1385.	1.4	22
44	Sequence-Dependent Stereoselectivity in the Binding of Tetrapeptides in Water by a Flexible Artificial Receptor. Angewandte Chemie - International Edition, 2006, 45, 4277-4281.	7.2	66
45	Atropodiastereoselective Cleavage of Configurationally Unstable Biaryl Lactones with Amino Acid Esters. European Journal of Organic Chemistry, 2006, 2006, 4349-4361.	1.2	17
46	World Wide Web Chemie und Recht. Nachrichten Aus Der Chemie, 2005, 53, 1142-1142.	0.0	0
47	World Wide Web Chemie ―aber sicher. Nachrichten Aus Der Chemie, 2005, 53, 431-431.	0.0	0
48	World Wide Web Chromatographie. Nachrichten Aus Der Chemie, 2005, 53, 536-536.	0.0	0