Zhongzhe Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering the geometric and electronic structure of Ru <i>via</i> Ru–TiO ₂ interaction for enhanced selective hydrogenation. Catalysis Science and Technology, 2022, 12, 1005-1016.	2.1	12
2	High-efficiency visible-light photocatalytic H ₂ O ₂ production using CdSe-based core/shell quantum dots. Catalysis Science and Technology, 2022, 12, 2865-2871.	2.1	2
3	Ru Cluster-Decorated Cu Nanoparticles Enhanced Selectivity to Imine from One-Pot Cascade Transformations. Industrial & Engineering Chemistry Research, 2022, 61, 3474-3482.	1.8	6
4	Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2022, 43, 1860-1869.	6.9	9
5	Heteroatomâ€Doping of Nonâ€Noble Metalâ€Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy. Small Methods, 2021, 5, e2000988.	4.6	165
6	Thermal Puffing Promoting the Synthesis of N-Doped Hierarchical Porous Carbon–CoO _{<i>x</i>} Composites for Alkaline Water Reduction. ACS Omega, 2021, 6, 6474-6481.	1.6	3
7	A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2. Chinese Journal of Chemical Engineering, 2021, 31, 126-134.	1.7	10
8	Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes. Chinese Journal of Catalysis, 2021, 42, 1185-1194.	6.9	14
9	Oxygen-deficient TiO ₂ and carbon coupling synergistically boost the activity of Ru nanoparticles for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 10160-10168.	5.2	28
10	Building highly active hybrid double–atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy and Environment, 2021, 6, 846-857.	4.7	22
11	Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis. Catalysis Today, 2020, 339, 120-126.	2.2	102
12	Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. Journal of Materials Chemistry A, 2020, 8, 124-137.	5.2	18
13	Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C ₃ N ₄ : a novel design strategy for electrocatalyst screening. Journal of Materials Chemistry A, 2020, 8, 2672-2683.	5.2	40
14	High-Throughput Screening of Hydrogen Evolution Reaction Catalysts in MXene Materials. Journal of Physical Chemistry C, 2020, 124, 13695-13705.	1.5	51
15	Simultaneous electrochemical ozone production and hydrogen evolution by using tantalum-based nanorods electrocatalysts. Applied Catalysis B: Environmental, 2020, 266, 118632.	10.8	42
16	Biomass Valorization via Paired Electrosynthesis Over Vanadium Nitrideâ€Based Electrocatalysts. Advanced Functional Materials, 2019, 29, 1904780.	7.8	120
17	Optimizing Alkyne Hydrogenation Performance of Pd on Carbon in Situ Decorated with Oxygen-Deficient TiO ₂ by Integrating the Reaction and Diffusion. ACS Catalysis, 2019, 9, 10656-10667.	5.5	50
18	Micromechanical simulation of the pore size effect on the structural stability of brittle porous materials with bicontinuous morphology. Physical Chemistry Chemical Physics, 2019, 21, 12895-12904.	1.3	10

ZHONGZHE WEI

#	Article	IF	CITATIONS
19	Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. Chinese Journal of Catalysis, 2019, 40, 980-1002.	6.9	68
20	Multiscale Simulation of Morphology Evolution of Supported Pt Nanoparticles via Interfacial Control. Langmuir, 2019, 35, 6393-6402.	1.6	8
21	Single and double boron atoms doped nanoporous C ₂ N– <i>h</i> 2D electrocatalysts for highly efficient N ₂ reduction reaction: a density functional theory study. Nanotechnology, 2019, 30, 335403.	1.3	81
22	2D-3D transformation of palladium and gold nanoparticles on functionalized Mo2C by multiscale simulation. Applied Surface Science, 2019, 481, 554-563.	3.1	10
23	Multiscale simulation on thermal stability of supported metal nanocatalysts. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1405.	6.2	3
24	Multiscale Simulation on Product Distribution from Pyrolysis of Styrene-Butadiene Rubber. Polymers, 2019, 11, 1967.	2.0	13
25	Enhanced Oxygen Reduction Activity on Carbon Supported Pd Nanoparticles Via SiO ₂ . ChemCatChem, 2019, 11, 1278-1285.	1.8	9
26	A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene. Chinese Journal of Catalysis, 2019, 40, 152-159.	6.9	76
27	Palladium Dimer Supported on Mo ₂ CO ₂ (MXene) for Direct Methane to Methanol Conversion. Advanced Theory and Simulations, 2019, 2, 1800158.	1.3	22
28	Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Applied Surface Science, 2019, 465, 911-918.	3.1	63
29	Chemoselective hydrogenation of phenol to cyclohexanol using heterogenized cobalt oxide catalysts. Chinese Chemical Letters, 2018, 29, 815-818.	4.8	37
30	Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy and Environmental Science, 2018, 11, 800-806.	15.6	407
31	Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Molecular Catalysis, 2018, 448, 100-107.	1.0	49
32	Efficient synthesis of ultrafine Pd nanoparticles on an activated N-doping carbon for the decomposition of formic acid. Catalysis Communications, 2018, 108, 55-58.	1.6	48
33	Oxygen vacancies on TiO ₂ promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2264-2272.	5.2	163
34	The synergic effects at the molecular level in CoS ₂ for selective hydrogenation of nitroarenes. Green Chemistry, 2018, 20, 671-679.	4.6	54
35	Dominating Role of Ni ⁰ on the Interface of Ni/NiO for Enhanced Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 7139-7147.	4.0	206
36	CoO _x –carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters. Journal of Materials Chemistry A, 2017, 5, 10510-10516.	5.2	45

ZHONGZHE WEI

#	Article	IF	CITATIONS
37	Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors. Nano Research, 2016, 9, 2672-2680.	5.8	41
38	Cobalt Encapsulated in N-Doped Graphene Layers: An Efficient and Stable Catalyst for Hydrogenation of Quinoline Compounds. ACS Catalysis, 2016, 6, 5816-5822.	5.5	185
39	Reactivity and mechanism investigation of selective hydrogenation of 2,3,5-trimethylbenzoquinone on in situ generated metallic cobalt. Catalysis Science and Technology, 2016, 6, 4503-4510.	2.1	18
40	In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. Journal of the American Chemical Society, 2015, 137, 2688-2694.	6.6	1,642
41	In Situ-Generated Co ⁰ -Co ₃ O ₄ /N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 4783-4789.	5.5	363
42	Ni-promoted synthesis of graphitic carbon nanotubes from in situ produced graphitic carbon for dehydrogenation of ethylbenzene. Chemical Communications, 2015, 51, 12859-12862.	2.2	56
43	RuPd Alloy Nanoparticles Supported on N-Doped Carbon as an Efficient and Stable Catalyst for Benzoic Acid Hydrogenation. ACS Catalysis, 2015, 5, 3100-3107.	5.5	136
44	Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science and Technology, 2015, 5, 397-404.	2.1	73
45	Updating Biomass into Functional Carbon Material in Ionothermal Manner. ACS Applied Materials & Interfaces, 2014, 6, 12515-12522.	4.0	98
46	Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds. Green Chemistry, 2014, 16, 4371-4377.	4.6	45
47	Combination of Carbon Nitride and Carbon Nanotubes: Synergistic Catalysts for Energy Conversion. ChemSusChem, 2014, 7, 2303-2309.	3.6	84
48	An Efficient Way To Introduce Hierarchical Structure into Biomass-Based Hydrothermal Carbonaceous Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 2435-2441.	3.2	94
49	Design and Fabrication of Hierarchically Porous Carbon with a Template-free Method. Scientific Reports, 2014, 4, 6349.	1.6	77