Hemtej Gullapalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7908842/publications.pdf

Version: 2024-02-01

25 papers 5,258 citations

361296 20 h-index 610775 24 g-index

25 all docs

25 docs citations

25 times ranked

10179 citing authors

#	Article	IF	CITATIONS
1	High-temperature solid electrolyte interphases (SEI) in graphite electrodes. Journal of Power Sources, 2018, 381, 107-115.	4.0	52
2	Doping stabilized Li3V2(PO4)3 cathode for high voltage, temperature enduring Li-ion batteries. Journal of Power Sources, 2018, 390, 100-107.	4.0	23
3	2D material integrated macroporous electrodes for Li-ion batteries. RSC Advances, 2017, 7, 32737-32742.	1.7	12
4	A materials perspective on Li-ion batteries at extreme temperatures. Nature Energy, 2017, 2, .	19.8	542
5	Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43623-43631.	4.0	25
6	Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13466-13471.	4.0	41
7	Rate limiting activity of charge transfer during lithiation from ionic liquids. Journal of Power Sources, 2016, 330, 84-91.	4.0	20
8	Hexagonal Boron Nitrideâ€Based Electrolyte Composite for Liâ€Ion Battery Operation from Room Temperature to 150 °C. Advanced Energy Materials, 2016, 6, 1600218.	10.2	112
9	Ionic Liquid–Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C. ACS Applied Materials & 100 & 15242-15249.	4.0	51
10	Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25777-25783.	4.0	54
11	Creating supersolvophobic nanocomposite materials. RSC Advances, 2013, 3, 4216.	1.7	2
12	Supercapacitor Operating At 200 Degrees Celsius. Scientific Reports, 2013, 3, 2572.	1.6	89
13	Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films. Applied Physics Letters, 2013, 102, .	1.5	21
14	Local charge transfer doping in suspended graphene nanojunctions. Applied Physics Letters, 2012, 100, 023306.	1.5	3
15	Three-Dimensionally Engineered Porous Silicon Electrodes for Li Ion Batteries. Nano Letters, 2012, 12, 6060-6065.	4.5	143
16	Wetting transparency of graphene. Nature Materials, 2012, 11, 217-222.	13.3	971
17	High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Applied Physics Letters, 2012, 100, .	1.5	216
18	Protecting copper from electrochemical degradation by graphene coating. Carbon, 2012, 50, 4040-4045.	5.4	409

#	Article	IF	CITATIONS
19	Harvesting Energy from Water Flow over Graphene. Nano Letters, 2011, 11, 3123-3127.	4.5	206
20	Graphene Growth via Carburization of Stainless Steel and Application in Energy Storage. Small, $2011, 7, 1697-1700$.	5. 2	43
21	Flexible ZnO–Cellulose Nanocomposite for Multisource Energy Conversion. Small, 2011, 7, 2173-2178.	5.2	73
22	Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor. Small, 2010, 6, 1641-1646.	5.2	318
23	Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules. Small, 2010, 6, 2535-2538.	5.2	279
24	Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano, 2010, 4, 6337-6342.	7.3	1,550
25	Stacked On-Chip Supercapacitors for Extreme Environments. Journal of Materials Chemistry A, 0, , .	5.2	3